Limited Effects of Long-Term Repeated Season and Interval of Prescribed Burning on Understory Vegetation Compositional Trajectories and Indicator Species in Ponderosa Pine Forests of Northeastern Oregon, USA
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design
2.3. Field Sampling
2.4. Statistical Analyses
3. Results
3.1. Treatment-Level Differences in Community Composition
3.2. Treatment-Level Community Trajectories over Time
3.3. Treatment-Level Indicator Species Analysis (ISA)
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Code | Scientific Name | Family | Group |
---|---|---|---|
ACMI | Achillea millefolium ssp. lanulosa | Asteraceae | native perennial forb |
AGOS * | Agoseris spp. | Asteraceae | native perennial forb |
AGSP | Agropyron spicatum | Poaceae | native perennial grass |
AMAL | Amelanchier alnifolia | Rosaceae | native perennial shrub |
ANMI | Antennaria microphylla | Asteraceae | native perennial forb |
ARCO | Arnica cordifolia | Asteraceae | native perennial forb |
BERE | Berberis repens | Berberidaceae | native perennial shrub |
BRCA | Bromus carinatus | Poaceae | native perennial grass |
BRTE | Bromus tectorum | Poaceae | exotic annual grass |
CAGE | Carex geyeri | Cyperaceae | native perennial sedge |
CARO | Carex rossii | Cyperaceae | native perennial sedge |
CARU | Calamagrostis rubescens | Poaceae | native perennial grass |
CEVE | Ceanothus velutinus | Rhamnaceae | native perennial shrub |
CIVU | Cirsium vulgare | Asteraceae | exotic biennial forb |
CLRH | Clarkia rhomboidea | Onagraceae | native annual forb |
COLL * | Collomia spp. | Polemoniaceae | native annual forb |
COPMIG * | Collinsia/Microsteris Group | Scroph.\Polem. | native annual forb |
CREP * | Crepis spp. | Asteraceae | native perennial forb |
CRTO | Cryptantha torreyana | Boraginaceae | native annual forb |
ELCI | Elymus cinereus | Poaceae | native perennial grass |
ELGL | Elymus glaucus | Poaceae | native perennial grass |
ERCO | Erigeron corymbosus | Asteraceae | native perennial forb |
ERHE | Eriogonum heracleoides | Polygonaceae | native perennial forb |
ERIC | Ericameria spp. | Asteraceae | native perennial shrub |
FEID | Festuca idahoensis | Poaceae | native perennial grass |
FRVI | Fragaria virginiana | Rosaceae | native perennial forb |
GAAP | Galium aparine | Rubiaceae | native annual forb |
GEVI | Geranium viscosissimum var. nervosum | Geraniaceae | native perennial forb |
HIAL2 | Hieracium albertinum | Asteraceae | native perennial forb |
HYCA | Hydrophyllum capitatum | Hydrophyllaceae | native perennial forb |
KEGA | Kelloggia galioides | Rubiaceae | native perennial forb |
KOCR | Koeleria cristata | Poaceae | native perennial grass |
LOTR | Lomatium triternatum | Apiaceae | native perennial forb |
LUCA | Lupinus caudatus | Fabaceae | native perennial forb |
MEFU | Melica fugax | Poaceae | native perennial grass |
MOPE | Montia perfoliata | Portulacaceae | native annual forb |
ONAG * | Onagraceae spp. | Onagraceae | native annual forb |
PHAC * | Phacelia spp. | Hydrophyllaceae | native perennial forb |
PHLO | Phlox longifolia | Polemoniaceae | native perennial forb |
Appendix B
Code | Scientific Name | Family | Group |
---|---|---|---|
PODO | Polygonum douglasii | Polygonaceae | native annual forb |
PONE | Poa nervosa var. wheeleri | Poaceae | native perennial grass |
POSE | Poa secunda | Poaceae | native perennial grass |
PRUN * | Prunus spp. | Rosaceae | native perennial shrub |
RICE | Ribes cereum | Grossulariaceae | native perennial shrub |
SEIN | Senecio integerrimus | Asteraceae | native perennial forb |
SIHY | Sitanion hystrix | Poaceae | native perennial grass |
SIME | Silene menziesii | Caryophyllaceae | native perennial forb |
SIOR | Sidalcea oregana | Malvaceae | native perennial forb |
SOMU | Solidago multiradiata var. scopulorum | Asteraceae | native perennial forb |
STIP * | Stipa spp. | Poaceae | native perennial grass |
SYMP * | Symphoricarpos spp. | Caprifoliaceae | native perennial shrub |
TAOF | Taraxacum officinale | Asteraceae | exotic perennial forb |
THFE | Thalictrum fendleri | Ranunculaceae | native perennial forb |
VIPU | Viola purpurea | Violaceae | native perennial forb |
References
- Naveh, Z. Effects of fire in the Mediterranean region. In Fire and Ecosystems; Academic Press: New York, NY, USA, 1974; pp. 401–434. [Google Scholar]
- Wein, R.W.; Maclean, D.A. The Role of Fire in Northern Circumpolar Ecosystems; John Wiley & Sons: New York, NY, USA, 1983. [Google Scholar]
- Agee, J.K. Ecology of Pacific Northwest Forests; Island Press: Washington, DC, USA, 1993. [Google Scholar]
- Bond, W.J.; Keeley, J.E. Fire as a global ‘herbivore’: The ecology and evolution of flammable ecosystems. Trends Ecol. Evol. 2005, 20, 387–394. [Google Scholar] [CrossRef] [PubMed]
- Cooper, C.F. Changes in vegetation, structure, and growth of south western pine forests since white settlement. Ecol. Monogr. 1960, 30, 29–164. [Google Scholar] [CrossRef]
- Parsons, D.J.; DeBenedetti, S.H. Impact of fire suppression on a mixed-conifer forest. For. Ecol. Manag. 1979, 2, 21–33. [Google Scholar] [CrossRef]
- Johnston, J.D.; Bailey, J.D.; Dunn, C.J. Influence of fire disturbance and biophysical heterogeneity on pre-settlement ponderosa pine and mixed conifer forests. Ecosphere 2016, 7, e01581. [Google Scholar] [CrossRef]
- Stephens, S.; Fry, D.; Franco-Vizcaíno, E. Wildfire and spatial patterns in forests in northwestern Mexico: The United States wishes it had similar fire problems. Ecol. Soc. 2008, 13, 10. [Google Scholar] [CrossRef] [Green Version]
- Collins, B.M.; Lydersen, J.M.; Fry, D.L.; Wilkin, K.; Moody, T.; Stephens, S.L. Variability in vegetation and surface fuels across mixed-conifer-dominated landscapes with over 40 years of natural fire. For. Ecol. Manag. 2016, 381, 74–83. [Google Scholar] [CrossRef] [Green Version]
- Koontz, M.J.; North, M.P.; Werner, C.M.; Fick, S.E.; Latimer, A.M. Local forest structure variability increases resilience to wildfire in dry western U.S. coniferous forests. Ecol. Lett. 2020, 23, 483–494. [Google Scholar] [CrossRef] [Green Version]
- Agee, J.K.; Skinner, C.N. Basic principles of forest fuel reduction treatments. For. Ecol. Manag. 2005, 211, 83–96. [Google Scholar] [CrossRef]
- Ryan, K.C.; Knapp, E.E.; Varner, J.M. Prescribed fire in North American forests and woodlands: History, current practice, and challenges. Front. Ecol. Environ. 2013, 11, e15–e24. [Google Scholar] [CrossRef]
- Jewell, S.; Vilsack, T.J. The National Strategy: The Final Phase in the Development of the National Cohesive Wildland Fire Management Strategy. United States Department of Agriculture-United States Department of Interior; 2014. Available online: https://www.forestsandrangelands.gov/documents/strategy/strategy/CSPhaseIIINationalStrategyApr2014.pdf (accessed on 29 July 2020).
- North, M.; Collins, B.M.; Stephens, S. Using fire to increase the scale, benefits, and future maintenance of fuels treatments. J. For. 2012, 110, 392–401. [Google Scholar] [CrossRef]
- North, M.; Brough, A.; Long, J.; Collins, B.; Bowden, P.; Yasuda, D.; Miller, J.; Sugihara, N. Constraints on mechanized treatment significantly limit mechanical fuels reduction extent in the Sierra Nevada. J. For. 2015, 113, 40–48. [Google Scholar] [CrossRef]
- North, M.P.; Stephens, S.L.; Collins, B.M.; Agee, J.K.; Aplet, G.; Franklin, J.F.; Fulé, P.Z. Reform forest fire management. Science 2015, 349, 1280–1281. [Google Scholar] [CrossRef]
- Thompson, M.; Dunn, C.; Calkin, D. Wildfires: Systemic changes required. Science 2015, 350, 920–921. [Google Scholar] [CrossRef] [PubMed]
- Covington, W.W.; Fule, P.Z.; Moore, M.M.; Hart, S.C.; Kolb, T.E.; Mast, J.N.; Sackett, S.S.; Wagner, M.R. Restoring ecosystem health in ponderosa pine forests of the Southwest. J. For. 1997, 95, 23–29. [Google Scholar]
- Covington, W.W. Helping western forests heal. Nature 2000, 408, 135–136. [Google Scholar] [CrossRef]
- Allen, C.D.; Savage, M.; Falk, D.A.; Suckling, K.F.; Swetnam, T.W.; Schulke, T.; Stacey, P.B.; Morgan, P.; Hoffman, M.; Klingel, J.T. Ecological restoration of southwestern ponderosa pine ecosystems: A broad perspective. Ecol. Appl. 2002, 12, 1418–1433. [Google Scholar] [CrossRef]
- Whisenant, S.; Shevock, J.R.; Palik, B.J.; Engstrom, R.T.; Egan, D.; Volland, L.A.; Dell, J.D.; Parker, V.T. Can native flora survive prescribed burns? In Maintaining Biodiversity in Forest Ecosystems; Hunter, M.J., Ed.; Cambridge University Press: New York, NY, USA, 1999; pp. 691–709. [Google Scholar]
- Shevock, J.R. Status of Are and Endemic Plants. Sierra Nevada Ecosystem Project: Final Report to Congress; Report No. 37; Assessments and Scientific Basis for Management Options University of California Press, Centers for Water and Wildland Resources: Davis, CA, USA, 1996; Volume 2. [Google Scholar]
- Palik, B.J.; Engstrom, R.T. Species composition. In Maintaining Biodiversity in Forest Ecosystems; Hunter, M.J., Ed.; Cambridge University Press: New York, NY, USA, 1999; pp. 65–94. [Google Scholar]
- Brown, J.K. Ecological principles, shifting fire regimes and management consideration. In Wildland Fire in Ecosystems: Effects of Fire on Flora; Brown, J.K., Smith, J.K., Eds.; USDA Forest Service, Rocky Mountain Research Station: Ogden, UT, USA, 2000; pp. 185–203. [Google Scholar]
- Keeley, J.E.; Pausas, J.G.; Rundel, P.W.; Bond, W.J.; Bradstock, R.A. Fire as an evolutionary pressure shaping plant traits. Trends Plant Sci. 2011, 16, 406–411. [Google Scholar] [CrossRef] [Green Version]
- Pausas, J.G.; Keeley, J.E. Evolutionary ecology of resprouting and seeding in fire-prone ecosystems. New Phytol. 2014, 204, 55–65. [Google Scholar] [CrossRef]
- Battles, J.J.; Shlisky, A.J.; Barrett, R.H.; Heald, R.C.; Allen-Diaz, B.H. The effects of forest management on plant species diversity in a Sierran conifer forest. For. Ecol. Manag. 2001, 146, 211–222. [Google Scholar] [CrossRef]
- Ryan, K.C.; Frandsen, W.H. Basal injury from smoldering fires in mature Pinus ponderosa Laws. Int. J. Wildland Fire 1991, 1, 107–118. [Google Scholar] [CrossRef]
- Varner, J.M.; Gordon, D.R.; Putz, E.; Hiers, J.K. Restoring fire to long-unburned Pinus palustris ecosystems: Novel fire effects and consequences for long-unburned ecosystems. Restor. Ecol. 2005, 13, 536–544. [Google Scholar] [CrossRef]
- Hood, S.M. Mitigating Old Tree Mortality in Long-Unburned, Fire-Dependent Forests: A Synthesis; Report No.: RMRS-GTR-283; USDA Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2010. [Google Scholar]
- Egan, D.; Howell, E.A. (Eds.) The Historical Ecology Handbook: A Restorationist’s Guide to Reference Ecosystems; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Baker, W.L.; Ehle, D. Uncertainty in surface-fire history: The case of ponderosa pine forests in the western United States. Can. J. For. Res. 2001, 31, 1205–1226. [Google Scholar] [CrossRef]
- Falk, D.A.; Heyerdahl, E.K.; Brown, P.M.; Farris, C.; Fulé, P.Z.; McKenzie, D.; Swetnam, T.W.; Taylor, A.H.; Van Horne, M.L. Multi-scale controls of historical forest-fire regimes: New insights from fire-scar networks. Front. Ecol. Environ. 2011, 9, 446–454. [Google Scholar] [CrossRef] [Green Version]
- Westerling, A.L.; Bryant, B.P. Climate change and wildfire in California. Clim. Change 2007, 87, 231–249. [Google Scholar] [CrossRef]
- Rogers, B.M.; Neilson, R.P.; Drapek, R.; Lenihan, J.M.; Wells, J.R.; Bachelet, D.; Law, B.E. Impacts of climate change on fire regimes and carbon stocks of the U.S. Pacific Northwest. J. Geophys. Res. 2011, 116, 303037. [Google Scholar] [CrossRef] [Green Version]
- Keeley, J.E.; Stephenson, N.L. Restoring natural fire regimes to the Sierra Nevada in an era of global change. In Wilderness Science in a Time of Change Conference-Volume 5: Wilderness Ecosystem, Threats and Management, Proceedings of the RMRS-P-15-VOL-5, Missoula, MT, USA, 23–27 May 1999; Cole, D.N., McCool, S.F., Borrie, W.T., O’Loughlin, J., Eds.; USDA Forest Service, Rocky Mountain Research Station: Ogden, UT, USA, 2000; pp. 255–265. [Google Scholar]
- Wright, H.A. A method to determine heat-caused mortality in bunchgrasses. Ecology 1970, 51, 582–587. [Google Scholar] [CrossRef]
- Volland, L.A.; Dell, J.D. Fire Effects on Pacific Northwest Forest and Range Vegetation; USDA Forest Service: Portland, OR, USA, 1981. [Google Scholar]
- Wright, H.A.; Klemmedson, J.O. Effect of fire on bunchgrasses of the sagebrush-grass region in southern Idaho. Ecology 1965, 46, 680–688. [Google Scholar] [CrossRef]
- Brockway, D.G.; Gatewood, R.G.; Paris, R.B. Restoring fire as an ecological process in shortgrass prairie ecosystems: Initial effects of prescribed burning during the dormant and growing seasons. J. Environ. Manag. 2002, 65, 135–152. [Google Scholar] [CrossRef] [Green Version]
- Parker, V.T. Can native flora survive prescribed burns? Fremontia 1987, 15, 3–6. [Google Scholar]
- Kauffman, J.B.; Martin, R.E. Factors influencing the scarification and germination of three montane Sierra Nevada shrubs. Northwest Sci. 1991, 65, 180–187. [Google Scholar]
- Kauffman, J.B.; Martin, R. Fire behavior, fuel consumption, and forest-floor changes following prescribed understory fires in Sierra Nevada mixed conifer forests. Can. J. For. Res. 1989, 19, 455–462. [Google Scholar] [CrossRef]
- Knapp, E.E.; Keeley, J.E.; Ballenger, E.A.; Brennan, T.J. Fuel reduction and coarse woody debris dynamics with early season and late season prescribed fire in a Sierra Nevada mixed conifer forest. For. Ecol. Manag. 2005, 208, 383–397. [Google Scholar] [CrossRef]
- Kauffman, J.B.; Martin, R.E. Sprouting shrub response to different seasons and fuel consumption levels of prescribed fire in Sierra Nevada mixed conifer ecosystems. For. Sci. 1990, 36, 748–764. [Google Scholar]
- Thies, W.G.; Westlind, D.J.; Loewen, M. Season of prescribed burn in ponderosa pine forests in eastern Oregon: Impact of pine mortality. Int. J. Wildland Fire 2005, 14, 223–231. [Google Scholar] [CrossRef]
- Knapp, E.E.; Keeley, J.E. Heterogeneity in fire severity within early season and late season prescribed burns in a mixed-conifer forest. Int. J. Wildland Fire 2006, 15, 37–45. [Google Scholar] [CrossRef] [Green Version]
- Billings, W.D. Cheatgrass and resultant fire on ecosystems in the western Great Basin. In Proceedings-Ecology and Management of Annual Rangelands; Monsen, S.B., Kitchen, S.G., Eds.; General Technical Reports INT-GTR-313; USDA Forest Service, Intermountain Research Station: Ogden, UT, USA, 1994; pp. 22–30. [Google Scholar]
- Kerns, B.K.; Tortorelli, C.; Day, M.A.; Nietupski, T.; Barros, A.M.G.; Kim, J.B.; Krawchuk, M.A. Invasive grasses: A new perfect storm for forested ecosystems? For. Ecol. Manag. 2020, 463, 117985. [Google Scholar] [CrossRef]
- Bradley, B.A.; Curtis, C.A.; Fusco, E.J.; Abatzoglou, J.T.; Balch, J.K.; Dadashi, S.; Tuanmu, M.-N. Cheatgrass (Bromus tectorum) distribution in the intermountain Western United States and its relationship to fire frequency, seasonality, and ignitions. Biol. Invasions 2018, 20, 1493–1506. [Google Scholar] [CrossRef] [Green Version]
- Keeley, J.E.; McGinnis, T.W. Impact of prescribed fire and other factors on cheatgrass persistence in a Sierra Nevada ponderosa pine forest. Int. J. Wildland Fire 2007, 16, 96–106. [Google Scholar] [CrossRef]
- Thies, W.G.; Westlind, D.J.; Loewen, M. Field Note: Impact of spring or fall repeated prescribed fire on growth of ponderosa pine in eastern Oregon, USA. West. J. Appl. For. 2013, 28, 128–132. [Google Scholar] [CrossRef]
- Westlind, D.J.; Kerns, B.K. Repeated fall prescribed fire in previously thinned ponderosa pine (Pinus ponderosa) increases growth and resistance to other disturbances. For. Ecol. Manag. 2020. in revision. [Google Scholar]
- Kerns, B.K.; Westlind, D.J. Effect of season and interval of prescribed burn on ponderosa pine butterfly defoliation patterns. Can. J. For. Res. 2013, 43, 979–983. [Google Scholar] [CrossRef]
- Westlind, D.; Kerns, B. Long-term effects of burn season and frequency on ponderosa pine forest fuels and seedlings. Fire Ecol. 2017, 13, 42–61. [Google Scholar] [CrossRef]
- Kerns, B.K.; Buonopane, M.; Thies, W.G.; Niwa, C. Reintroducing fire into a ponderosa pine forest with and without cattle grazing: Understory vegetation response. Ecosphere 2011, 2, 1–23. [Google Scholar] [CrossRef]
- Kerns, B.K.; Day, M.A. Prescribed fire regimes subtly alter ponderosa pine forest plant community structure. Ecosphere 2018, 9, e02529. [Google Scholar] [CrossRef] [Green Version]
- Kerns, B.K.; Thies, W.G.; Niwa, C.G. Season and severity of prescribed burn in ponderosa pine forests: Implications for understory native and exotic plants. Ecoscience 2006, 13, 44–55. [Google Scholar] [CrossRef]
- Hatten, J.; Zabowski, D.; Ogden, A.; Thies, W.; Choi, B. Role of season and interval of prescribed burning on ponderosa pine growth in relation to soil inorganic N and P and moisture. For. Ecol. Manag. 2012, 269, 106–115. [Google Scholar] [CrossRef]
- Johnston, J.D. Influence of Fire Disturbance and Biophysical Heterogeneity on Pre-Settlement Ponderosa Pine and Mixed Conifer Forests; Oregon State University: Corvallis, OR, USA, 2016. [Google Scholar]
- Marchant, R. How important are rare species in aquatic community ecology and bioassessment? A comment on the conclusions of Cao et al. Author’s reply. Limnol. Oceanogr. 1999, 44, 1840–1841. [Google Scholar]
- Gauch, H.G. Multivariate Analysis in Community Ecology; Cambridge University Press: Cambridge, UK, 1982. [Google Scholar]
- McCune, B.; Grace, J.B.; Urban, D.L. Analysis of Ecological Communities; MjM Software Design: Gleneden Beach, OR, USA, 2002. [Google Scholar]
- Clarke, K.R.; Green, R.H. Statistical Design and Analysis for a “Biological Effects” Study. Mar. Ecol. Prog. Ser. 1988, 46, 213–226. [Google Scholar] [CrossRef]
- Bailey, R.C.; Linke, S.; Yates, A.G. Bioassessment of Freshwater Ecosystems using the Reference Condition Approach: Comparing Established and New Methods with Common Data Sets. Freshw. Sci. 2014, 33, 1204–1211. [Google Scholar] [CrossRef] [Green Version]
- Sgarbi, L.F.; Bini, L.M.; Heino, J.; Jyrkänkallio-Mikkola, J.; Landeiro, V.L.; Santos, E.P.; Schneck, F.; Siqueira, T.; Soininen, J.; Tolonen, K.T.; et al. Sampling effort and information quality provided by rare and common species in estimating assemblage structure. Ecol. Indic. 2020, 110, 105937. [Google Scholar] [CrossRef]
- Sokal, R.R.; Rohlf, F.J. Biometry: The Principles and Practice of Statistics in Biological Research; Freeman and Company: New York, NY, USA, 1995. [Google Scholar]
- Legendre, P.; Gallagher, E.D. Ecologically meaningful transformations for ordination of species data. Oecologia 2001, 129, 271–280. [Google Scholar] [CrossRef] [PubMed]
- De Cáceres, M.; Coll, L.; Legendre, P.; Allen, R.B.; Wiser, S.K.; Fortin, M.J.; Condit, R.; Hubbell, S. Trajectory analysis in community ecology. Ecol. Monogr. 2019, 89, e01350. [Google Scholar] [CrossRef] [Green Version]
- Dufrêne, M.; Legendre, P. Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecol. Monogr. 1997, 67, 345–366. [Google Scholar] [CrossRef]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Wagner, H. Vegan: Community Ecology Package. R Package Version 2.5-6. 2019. Available online: https://cran.rproject.org/package=vegan (accessed on 18 May 2020).
- De Caceres, M.; De Caceres, M.M. Vegclust: Fuzzy Clustering of Vegetation Data. R Package Version 1.7.7. 2019. Available online: https://cran.r-project.org/package=vegclust (accessed on 18 May 2020).
- Gower, J.C. Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 1966, 53, 325–338. [Google Scholar] [CrossRef]
- Clarke, K.R.; Somerfield, P.J.; Airoldi, L.; Warwick, R.M. Exploring interactions by second-stage community analyses. J. Exp. Mar. Biol. Ecol. 2006, 338, 179–192. [Google Scholar] [CrossRef]
- Roberts, D.W. Labdsv: Ordination and Multivariate Analysis for Ecology. R Package 2.0-1. 2019. Available online: https://cran.r-project.org/package=labdsv (accessed on 18 May 2020).
- Gratkowski, H. Heat as a factor in germination of seeds of Ceanothus velutinus var. laevigatus T. & G. Ph.D. Thesis, Oregon State University, Corvallis, OR, USA, 1962. [Google Scholar]
- Keeley, J.E. Seed germination and life history syndromes in the California chaparral. Bot. Rev. 1991, 57, 81–116. [Google Scholar] [CrossRef]
- Kondoh, M. Unifying the relationships of species richness to productivity and disturbance. Proc. R. Soc. B Biol. Sci. 2001, 268, 269–271. [Google Scholar] [CrossRef]
- Laughlin, D.C.; Bakker, J.D.; Daniels, M.L.; Moore, M.M.; Casey, C.A.; Springer, J.D. Restoring plant species diversity and community composition in a ponderosa pine-bunchgrass ecosystem. Plant Ecol. 2008, 197, 139–151. [Google Scholar] [CrossRef] [Green Version]
- Webster, K.M.; Halpern, C.B. Long-term vegetation responses to reintroduction and repeated use of fire in mixed-conifer forests of the Sierra Nevada. Ecosphere 2010, 1, 1–27. [Google Scholar] [CrossRef]
- Wayman, R.B.; North, M. Initial response of a mixed-conifer understory plant community to burning and thinning restoration treatments. For. Ecol. Manag. 2007, 239, 32–44. [Google Scholar] [CrossRef]
- Goodwin, M.J.; North, M.P.; Zald, H.S.J.; Hurteau, M.D. The 15-year post-treatment response of a mixed-conifer understory plant community to thinning and burning treatments. For. Ecol. Manag. 2018, 429, 617–624. [Google Scholar] [CrossRef]
- Zald, H.S.J.; Gray, A.N.; North, M.; Kern, R.A. Initial tree regeneration responses to fire and thinning treatments in a Sierra Nevada mixed-conifer forest, USA. For. Ecol. Manag. 2008, 256, 168–179. [Google Scholar] [CrossRef]
- Johnston, J.D.; Dunn, C.J.; Vernon, M.J.; Bailey, J.D.; Morrissette, B.A.; Morici, K.E. Restoring historical forest conditions in a diverse inland Pacific Northwest landscape. Ecosphere 2018, 9, e02400. [Google Scholar] [CrossRef]
- Kinucan, R.J.; Smeins, F.E. Soil Seed Bank of a Semiarid Texas Grassland Under Three Long-Term (36-Years) Grazing Regimes. Am. Midl. Nat. 1992, 128, 11–21. [Google Scholar] [CrossRef]
- Carr, C.A.; Krueger, W.C. The Role of the Seed Bank in Recovery of Understory Species in an Eastern Oregon Ponderosa Pine Forest. Northwest Sci. 2012, 86, 168–178. [Google Scholar] [CrossRef]
- North, M.P.; Stine, P.; O’Hara, K.; Zielinksi, W.; Stephens, S.L. An Ecosystem Management Strategy for Sierran Mixed-Conifer Forests; Report No.: PSW-GTR-220; USDA Forest Service, Pacific Southwest Research Station: Albany, CA, USA, 2009. [Google Scholar]
Year | Source | df | SS | MS | F | P |
---|---|---|---|---|---|---|
2002 | Season | 2 | 1.49 | 0.74 | 2.10 | 0.0050 |
Interval | 1 | 0.24 | 0.24 | 0.69 | 0.7610 | |
Total | 88 | 31.84 | ||||
2004 | Season | 2 | 1.58 | 0.79 | 2.56 | 0.0010 |
Interval | 1 | 0.31 | 0.31 | 1.02 | 0.3900 | |
Total | 88 | 28.08 | ||||
2007 | Season | 2 | 1.44 | 0.72 | 2.23 | 0.0130 |
Interval | 1 | 0.23 | 0.23 | 0.72 | 0.7040 | |
Total | 88 | 29.15 | ||||
2009 | Season | 2 | 1.42 | 0.71 | 2.25 | 0.0060 |
Interval | 1 | 0.31 | 0.31 | 0.98 | 0.4410 | |
Total | 88 | 28.55 | ||||
2012 | Season | 2 | 1.05 | 0.53 | 1.63 | 0.0840 |
Interval | 1 | 0.20 | 0.20 | 0.63 | 0.7560 | |
Total | 88 | 28.62 | ||||
2015 | Season | 2 | 1.09 | 0.54 | 1.76 | 0.0370 |
Interval | 1 | 0.12 | 0.12 | 0.40 | 0.9550 | |
Total | 88 | 27.53 |
Sampling Year | |||||||
---|---|---|---|---|---|---|---|
Treatment | 2004 | 2007 | 2009 | 2012 | Mean | sd | rho |
Unburned | 161.28 | 48.39 | 57.76 | 145.54 | 103.03 | 0.95 | 0.64 |
Fall 5YR | 126.41 | 86.67 | 105.08 | 97.94 | 103.95 | 0.25 | 0.97 |
Fall 15YR | 144.29 | 56.51 | 98.03 | 95.62 | 98.32 | 0.55 | 0.86 |
Spring 5YR | 129.70 | 95.54 | 106.73 | 102.99 | 108.65 | 0.22 | 0.98 |
Spring 15YR | 120.08 | 67.90 | 84.00 | 134.13 | 101.56 | 0.47 | 0.89 |
Annual Length by Sample Year | Overall | Overall | |||||
---|---|---|---|---|---|---|---|
Treatments | 2002–2004 | 2004–2007 | 2007–2009 | 2009–2012 | 2012–2015 | Length | Directionality |
Unburned | 5.49 | 3.90 | 5.52 | 7.19 | 6.29 | 28.38 | 0.37 |
Fall 5YR | 9.65 | 5.36 | 8.49 | 7.07 | 10.91 | 41.47 | 0.38 |
Fall 15YR | 7.45 | 6.34 | 8.74 | 6.72 | 11.93 | 41.18 | 0.42 |
Spring 5YR | 4.34 | 4.60 | 6.35 | 10.53 | 8.33 | 34.15 | 0.45 |
Spring 15YR | 4.26 | 4.78 | 6.12 | 6.19 | 6.57 | 27.91 | 0.41 |
Treatment | Unburned | Fall 5YR | Fall 15YR | Spring 5YR |
---|---|---|---|---|
Fall 5YR | 0.73 | |||
Fall 15YR | 0.60 | 0.33 | ||
Spring 5YR | 0.73 | 0.20 | 0.33 | |
Spring 15YR | −0.07 | 0.07 | 0.60 | 0.60 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zald, H.S.J.; Kerns, B.K.; Day, M.A. Limited Effects of Long-Term Repeated Season and Interval of Prescribed Burning on Understory Vegetation Compositional Trajectories and Indicator Species in Ponderosa Pine Forests of Northeastern Oregon, USA. Forests 2020, 11, 834. https://doi.org/10.3390/f11080834
Zald HSJ, Kerns BK, Day MA. Limited Effects of Long-Term Repeated Season and Interval of Prescribed Burning on Understory Vegetation Compositional Trajectories and Indicator Species in Ponderosa Pine Forests of Northeastern Oregon, USA. Forests. 2020; 11(8):834. https://doi.org/10.3390/f11080834
Chicago/Turabian StyleZald, Harold S. J., Becky K. Kerns, and Michelle A. Day. 2020. "Limited Effects of Long-Term Repeated Season and Interval of Prescribed Burning on Understory Vegetation Compositional Trajectories and Indicator Species in Ponderosa Pine Forests of Northeastern Oregon, USA" Forests 11, no. 8: 834. https://doi.org/10.3390/f11080834
APA StyleZald, H. S. J., Kerns, B. K., & Day, M. A. (2020). Limited Effects of Long-Term Repeated Season and Interval of Prescribed Burning on Understory Vegetation Compositional Trajectories and Indicator Species in Ponderosa Pine Forests of Northeastern Oregon, USA. Forests, 11(8), 834. https://doi.org/10.3390/f11080834