Effect of Degradation on Wood Hygroscopicity: The Case of a 400-Year-Old Coffin
Abstract
1. Introduction
2. Materials and Methods
2.1. Archaeological Wood
2.2. Wood Identification
2.3. Reference Material
2.4. Sorption Isotherms
2.5. Functional Groups. Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) Spectroscopy
2.6. Two-Dimensional (2D) X-Ray Diffraction
2.7. Thermodynamic Properties
2.8. Statistical Analysis
3. Results and Discussion
3.1. Sorption Isotherms
3.2. Functional Groups
3.3. Two-Dimensional (2D) X-ray Diffraction
3.4. Thermodynamic Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Guo, J.; Zhou, H.; Stevanic, J.S.; Dong, M.; Yu, M.; Salmén, L.; Yin, Y. Effects of ageing on the cell wall and its hygroscopicity of wood in ancient timber construction. Wood Sci. Technol. 2018, 52, 131–147. [Google Scholar] [CrossRef]
- Srebotnik, E.; Messner, K. Immunoelectron microscopical study of the porosity of brown-rot degraded pine wood. Holzforschung 1991, 45, 95–101. [Google Scholar] [CrossRef]
- Blanchette, R.A. A review of microbial deterioration found in archaeological wood. Int. Biodeter. Biodegr. 2000, 46, 189–204. [Google Scholar] [CrossRef]
- Pedersen, N.B.; Schmitt, U.; Koch, G.; Felby, C.; Thygesen, L.G. Lignin distribution in waterlogged archaeological Picea abies (L.) Karst degraded by erosion bacteria. Holzforschung 2014, 68, 791–798. [Google Scholar] [CrossRef]
- Pedersen, N.B.; Gierlinger, N.; Thygesen, L.G. Bacterial and abiotic decay in waterlogged archaeological Picea abies (L.) Karst studied by Confocal Raman imaging and ATR-FTIR spectroscopy. Holzforschung 2015, 69, 103–112. [Google Scholar] [CrossRef]
- Tintner, J.; Smidt, E.; Tieben, J.; Reschreiter, H.; Kowarik, K.; Grabner, M. Aging of wood under long-term storage in a salt environment. Wood Sci. Technol. 2016, 50, 953–961. [Google Scholar] [CrossRef][Green Version]
- García-Iruela, A.; Esteban, L.G.; de Palacios, P.; Garcia Fernandez, F.; Martin-Sampedro, R.; Eugenio, M. Changes in Cell Wall Components of Pinus sylvestris L. Wood after 300 Years in Contact with Salt (NaCl). BioResources 2019, 14, 3069–3091. [Google Scholar] [CrossRef]
- Esteban, L.G.; Fernandez, F.G.; Guindeo, A.; de Palacios, P.; Gril, J. Comparison of the hygroscopic behaviour of 205-year-old and recently cut juvenile wood from Pinus sylvestris L. Ann. For. Sci. 2006, 63, 309–317. [Google Scholar] [CrossRef]
- Esteban, L.G.; de Palacios, P.; Fernandez, F.G.; Guindeo, A.; Conde, M.; Baonza, V. Sorption and thermodynamic properties of juvenile Pinus sylvestris L. wood after 103 years of submersion. Holzforschung 2008, 62, 745–751. [Google Scholar] [CrossRef]
- Esteban, L.G.; de Palacios, P.; García Fernandez, F.; Martin, J.A.; Genova, M.; Fernandez-Golfin, J.I. Sorption and thermodynamic properties of buried juvenile Pinus sylvestris L. wood aged 1,170 ± 40 BP. Wood Sci. Technol. 2009, 43, 140–151. [Google Scholar] [CrossRef]
- Esteban, L.G.; de Palacios, P.; García Fernandez, F.; García-Amorena, I. Effects of burial of Quercus spp. wood aged 5910 ± 250 BP on sorption and thermodynamic properties. Int. Biodeter. Biodegr. 2010, 64, 371–377. [Google Scholar] [CrossRef]
- Simón, C.; Esteban, L.G.; de Palacios, P.; Fernandez, F.G.; García-Iruela, A.; Martín-Sampedro, R.; Eugenio, M.E. Sorption and thermodynamic properties of wood of Pinus canariensis C. Sm. ex DC. buried in volcanic ash during eruption. Wood Sci. Technol. 2017, 51, 517–534. [Google Scholar] [CrossRef][Green Version]
- Blanchette, R.A.; Cease, K.R.; Abad, A.R.; Koestler, R.J.; Simpson, E.; Sams, G.K. An Evaluation of Different Forms of Deterioration Found in Archaeological Wood. Int. Biodeter. Biodegr. 1991, 28, 3–22. [Google Scholar] [CrossRef]
- IAWA Committee. IAWA list of microscopic features for softwood identification. IAWA J. 2004, 25, 1–70. [Google Scholar] [CrossRef]
- Esteban, L.G.; Guindeo, A. Anatomía e Identificación de Maderas de Coníferas Españolas; AiTiM: Madrid, Spain, 1988. [Google Scholar]
- Esteban, L.G.; de Palacios, P.; Guindeo, A.; García, L.; Lázaro, I.; González, L.; Rodríguez, Y.; García, F.; Bobadilla, I.; Camacho, A. Anatomía e Identificación de Maderas de Coníferas a Nivel de Especie/Anatomy and Identification of Conifers Wood as a Species; Fundación Conde del Valle de Salazar-Mundi-Prensa: Madrid, Spain, 2002. [Google Scholar]
- Troncoso, O.; Greslebin, A. Trabeculae in Patagonian mountain cypress (Austrocedrus chilensis) associated with Phytophthora austrocedri infection. IAWA J. 2018, 39, 209–220. [Google Scholar] [CrossRef]
- Jeffrey, E.C. The Anatomy of Woody Plants; University of Chicago Press: Chicago, IL, USA, 1917. [Google Scholar]
- Hale, J.D. The structure of wood. In Canadian Woods: Their Properties and Uses; Forest Service Department of Interior: Washington, DC, USA, 1935. [Google Scholar]
- Catalán, G.; Gil, P.; Galera, R.M.; Martín, S.; Agúndez, D.; Alía, R. Las Regiones de Procedencia de Pinus Sylvestris L. y Pinus Nigra Arn. subsp. Salzmannii (Dunal) Franco en España; Instituto Nacional para la Conservación de la Naturaleza: Madrid, Spain, 1991. [Google Scholar]
- Martín, J.A.; Esteban, L.G.; de Palacios, P.; García Fernández, F. Variation in wood anatomical traits of Pinus sylvestris L. between Spanish regions of provenance. Trees 2010, 24, 1017–1028. [Google Scholar] [CrossRef]
- Esteban, L.G.; Martín, J.A.; de Palacios, P.; García-Fernández, F. Influence of region of provenance and climate factors on wood anatomical traits of Pinus nigra Arn. subsp. salzmannii. Eur. J. Forest Res. 2012, 131, 633–645. [Google Scholar] [CrossRef]
- Esteban, L.G.; Simón, C.; Fernández, F.G.; de Palacios, P.; Martín-Sampedro, R.; Eugenio, M.E.; Hosseinpourpia, R. Juvenile and mature wood of Abies pinsapo Boissier: Sorption and thermodynamic properties. Wood Sci. Technol. 2015, 49, 725–738. [Google Scholar] [CrossRef]
- Fredriksson, M.; Thybring, E.E. Scanning or desorption isotherms? Characterising sorption hysteresis of wood. Cellulose 2018, 25, 4477–4485. [Google Scholar] [CrossRef]
- Arevalo-Pinedo, A.; Giraldo-Zuñiga, A.D.; Dos Santos, F.L.; Arevalo, R.P. Sorption isotherms experimental data and mathematical models for murici pulp (Byrsonima sericea). In Proceedings of the 14th International Drying Symposium, Sao Paulo, Brazil, 22–25 August 2004. [Google Scholar]
- Jannot, Y.; Kanmogne, A.; Talla, A.; Monkam, L. Experimental determination and modelling of water desorption isotherms of tropical woods: Afzelia, Ebony, Iroko, Moabi and Obeche. Holz. Roh. Werkst. 2006, 64, 121–124. [Google Scholar] [CrossRef]
- Viollaz, P.E.; Rovedo, C.O. Equilibrium sorption isotherms and thermodynamic properties of starch and gluten. J. Food Eng. 1999, 40, 287–292. [Google Scholar] [CrossRef]
- García-Iruela, A.; Esteban, L.G.; García Fernández, F.; de Palacios, P.; Rodríguez-Navarro, A.B.; Martí-Sampedro, R.; Eugenio, M.E. Effect of vacuum/pressure cycles on cell wall composition and structure of poplar wood. Cellulose 2019, 26, 8543–8556. [Google Scholar] [CrossRef]
- Simpson, W. Sorption theories applied to wood. Wood Fiber Sci. 1980, 12, 183–195. [Google Scholar]
- Zelinka, S.L.; Glass, S.V.; Thybring, E.E. Myth versus reality: Do parabolic sorption isotherm models reflect actual wood–water thermodynamics? Wood Sci. Technol. 2018, 52, 1701–1706. [Google Scholar] [CrossRef]
- Avramidis, S. The basics of sorption. In Proceedings of the International Conference of COST Action E8: Mechanical Performance of Wood and Wood Products, Copenhagen, Denmark, 16–17 June 1997. [Google Scholar]
- Peralta, P.N.; Bangi, A.P.; Lee, A.W.C. Thermodynamics of moisture sorption by the giant-timber bamboo. Holzforschung 1997, 51, 177–182. [Google Scholar] [CrossRef]
- Siau, J.F. Wood: Influence of Moisture on Physical Properties; Department of Wood Science and Forest Products, Virginia Polytechnic Institute and State University: Blacksburg, VA, USA, 1995. [Google Scholar]
- Blanchette, R.A. Biodeterioration of archaeological wood. CAB Biodeterior. Abstr. 1995, 9, 113–127. [Google Scholar]
- Bjordal, C.G.; Nilsson, T.; Daniel, G. Microbial decay of waterlogged wood found in Sweden applicable to archaeology and conservation. Int. Biodeter. Biodegr. 1999, 43, 63–73. [Google Scholar] [CrossRef]
- Yilgör, N.; Köse, C.; Kartal, S.N. Effect of 300 year water-logging on chemical properties and natural decay and termite resistance of wood Abies bornmuleriana M. Wood Res. Slovak. 2005, 50, 35–42. [Google Scholar]
- Gelbrich, J.; Mai, C.; Militz, H. Chemical changes in wood degraded by bacteria. Int. Biodeter. Biodegr. 2008, 61, 24–32. [Google Scholar] [CrossRef]
- Kim, Y.S. Chemical characteristics of waterlogged archaeological wood. Holzforschung 1990, 44, 169–172. [Google Scholar] [CrossRef]
- Fengel, D. Aging and fossilization of wood and its components. Wood Sci. Technol. 1991, 25, 153–177. [Google Scholar] [CrossRef]
- Bardet, M.; Foray, M.F.; Maron, S.; Goncalves, P.; Trân, Q.K. Characterization of wood components of Portuguese medieval dugout canoes with high-resolution solid-state-NMR. Carbohyd. Polym. 2004, 57, 419–424. [Google Scholar] [CrossRef]
- French, A.D.; Kim, H.J. Cotton fiber structure. In Cotton Fiber, Physics and Biology; Fang, D., Ed.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 13–39. [Google Scholar]
- Ling, Z.; Wang, T.; Makarem, M.; Santiago-Cintrón, M.; Cheng, H.N.; Kang, X.; Bacher, M.; Potthast, A.; Rosenau, T.; King, H.; et al. Effects of ball milling on the structure of cotton cellulose. Cellulose 2019, 26, 305–328. [Google Scholar] [CrossRef]
15 °C Isotherm | 35 °C Isotherm | ||||||
---|---|---|---|---|---|---|---|
Juvenile Wood | Mature Wood | Archaeological Wood | Juvenile Wood | Mature Wood | Archaeological Wood | ||
Adsorption | Xm | A5.89 ± 0.29 | B7.01 ± 0.32 | B7.37 ± 0.29 | A5.64 ± 0.06 | B6.48 ± 0.06 | C6.69 ± 0.12 |
K | 0.79 ± 0.32 | 0.77 ± 0.30 | 0.77 ± 0.29 | 0.78 ± 0.07 | 0.77 ± 0.06 | 0.76 ± 0.13 | |
Cg | 5.04 ± 0.09 | 4.54 ± 0.10 | 5.40 ± 0.08 | 4.93 ± 0.02 | 4.50 ± 0.02 | 5.28 ± 0.03 | |
R | 0.996 | 0.996 | 0.993 | 0.998 | 0.999 | 0.998 | |
RMSE (%) | 0.73 | 0.93 | 0.91 | 0.03 | 0.07 | 0.22 | |
RH (%) | 29.60 | 29.2 | 31.0 | 29.8 | 29.1 | 31.0 | |
EMCa (%) | 4.66 | 5.17 | 6.07 | 4.39 | 4.74 | 5.45 | |
EMCf (%) | 1.23 | 1.84 | 1.30 | 1.25 | 1.74 | 1.24 | |
Desorption | Xm | A8.51 ± 0.07 | B10.19 ± 0.03 | C10.40 ± 0.07 | A7.46 ± 0.08 | B8.25 ± 0.07 | C8.92 ± 0.07 |
K | 0.71 ± 0.06 | 0.67 ± 0.02 | 0.68 ± 0.06 | 0.69 ± 0.07 | 0.70 ± 0.07 | 0.69 ± 0.07 | |
Cg | 5.56 ± 0.02 | 5.13 ± 0.01 | 6.61 ± 0.01 | 5.29 ± 0.02 | 5.20 ± 0.02 | 6.05 ± 0.02 | |
R | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | |
RMSE (%) | 0.05 | 0.01 | 0.05 | 0.05 | 0.06 | 0.03 | |
RH (%) | 33.9 | 35.0 | 36.4 | 34.0 | 33.6 | 35.5 | |
EMCd (%) | 7.12 | 8.17 | 9.43 | 6.08 | 6.64 | 7.79 | |
EMCf (%) | 1.39 | 2.02 | 0.97 | 1.38 | 1.61 | 1.13 |
Functional Group | Wave Number (cm−1) | Juvenile Wood | Mature Wood | Archaeological Wood |
---|---|---|---|---|
Hydroxyl (–OH) | 3400–3500 | 3349.75 | 3363.97 | 3350.95 |
C-H bond | 2890–2930 | 2888.36 | 2889.09 | 2938.26 |
Carbonyl (C=O) a | 1730–1750 | 1721.88 | 1731.04 | - |
Lignin b | 1510 | 1507.34 | 1507.82 | 1508.06 |
Deformation strains CH3. CH2 c | 1370 | 1368.01 | 1370.18 | 1373.79 |
Carboxyl (C-O) | 1200 | 1233.98 | 1263.87 | 1220.96 |
FWHM_200 (°) | FWHM_004 (°) | AS_200 (°) | Oriented Fraction | Cellulose Ibeta (%) | Crystallite Size (Å) | |
---|---|---|---|---|---|---|
Juvenile wood | 4.18 ± 0.1 | 2.19 ± 0.1 | 35.8 ± 0.48 | 0.47 ± 0.05 | 17.5 | 15.7 |
Mature wood | 3.96 ± 0.1 | 2.25 ± 0.2 | 29.9 ± 6.1 | 0.46 ± 0.08 | 14.6 | 14.2 |
Archaeological wood | 10.31 ± 0.4 | - | 74.6 ± 53 | 0.06 ± 0.01 | 9.6 | 7 |
Adsorption | Desorption | |||||||
---|---|---|---|---|---|---|---|---|
FSP (%) | qs (KJ/mol) | W0 (KJ/mol Dry) Wood) | FSP (%) | qs (KJ/mol) | W0 (KJ/mol Dry Wood) | |||
Max | Min | Max | Min | |||||
Juvenile wood | 26.59 | 3.05 | 0.88 | 0.45 | 25.66 | 7.90 | 1.65 | 1.23 |
Mature wood | 29.20 | 3.78 | 0.81 | 0.59 | 28.46 | 8.05 | 1.44 | 1.37 |
Archaeological wood | 30.02 | 5.27 | 1.15 | 0.85 | 29.95 | 9.43 | 1.76 | 1.64 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Iruela, A.; García Esteban, L.; García Fernández, F.; de Palacios, P.; Rodriguez-Navarro, A.B.; Sánchez, L.G.; Hosseinpourpia, R. Effect of Degradation on Wood Hygroscopicity: The Case of a 400-Year-Old Coffin. Forests 2020, 11, 712. https://doi.org/10.3390/f11070712
García-Iruela A, García Esteban L, García Fernández F, de Palacios P, Rodriguez-Navarro AB, Sánchez LG, Hosseinpourpia R. Effect of Degradation on Wood Hygroscopicity: The Case of a 400-Year-Old Coffin. Forests. 2020; 11(7):712. https://doi.org/10.3390/f11070712
Chicago/Turabian StyleGarcía-Iruela, Alberto, Luis García Esteban, Francisco García Fernández, Paloma de Palacios, Alejandro B. Rodriguez-Navarro, Luis Gil Sánchez, and Reza Hosseinpourpia. 2020. "Effect of Degradation on Wood Hygroscopicity: The Case of a 400-Year-Old Coffin" Forests 11, no. 7: 712. https://doi.org/10.3390/f11070712
APA StyleGarcía-Iruela, A., García Esteban, L., García Fernández, F., de Palacios, P., Rodriguez-Navarro, A. B., Sánchez, L. G., & Hosseinpourpia, R. (2020). Effect of Degradation on Wood Hygroscopicity: The Case of a 400-Year-Old Coffin. Forests, 11(7), 712. https://doi.org/10.3390/f11070712