Factors Affecting the Adoption of Agroforestry Practices: Insights from Silvopastoral Systems of Colombia
Abstract
:1. Introduction
2. Background
2.1. Agroforestry Systems
2.2. The MBSCR Project
3. Materials and Methods
3.1. Data and Study Area
3.2. Econometric Approach
3.3. Practices Adopted and Variables Considered
- Scattered trees: trees are incorporated in pastureland with a density of at least of 20 trees per hectare.
- Forage from trees and shrubs: species are planted specifically to feed animals, using a cut and carry system or cattle browsing.
- Forestry plantations: trees are established by planting and/or seeding (sowing) or raised artificially, for commercial purposes or conservation.
- Forest: natural woody vegetation without human intervention or successional vegetation recovered after human intervention, used in household or commercial activities.
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAO. Ayudando a Desarrollar una Ganadería Sustentable en Latinoamérica y el Caribe: Lecciones a Partir de Casos Exitosos; Organización de las Naciones Unidas para la Agricultura y la Alimentación: Rome, Italy, 2008; Oficina Regional para América Latina y el Caribe. [Google Scholar]
- Steinfeld, H.; Gerber, P.; Wassenaar, T.; Castel, V.; Rosales, M.; Haan, C.D. Livestock’s Long Shadow: Environmental Issues and Options; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2006. [Google Scholar]
- Upton, M. The Role of Livestock in Economic Development and Poverty Reduction; Pro-Poor Livestock Policy Iniative, PPLPI Working Paper No. 10; Food and Agriculture Organization - Animal Production and Health Division: Rome, Italy, 2004. [Google Scholar]
- Fleming, A.; O´Grady, A.P.; Medham, D.; England, J.; Mitchel, P.; Moroni, M.; Lyons, A. Understanding the values behind farmer perceptions of trees on farms to increase adoption of agroforestry in Australia. Agron. Sustain. Dev. 2019, 39, 9. [Google Scholar] [CrossRef] [Green Version]
- Steinfeld, H. Livestock in a Changing Landscape, Volume 1: Drivers, Consequences, and Responses; Island Press: Washington, DC, USA, 2010. [Google Scholar]
- Kaimowitz, D. Livestock and Deforestation in Central America in the 1980s and 1990s: A Policy Perspective (No. 9); CIFOR: Bogor, Indonesia, 1996. [Google Scholar]
- Asner, G.P.; Elmore, A.J.; Olander, L.P.; Martin, R.E.; Harris, A.T. Grazing systems, ecosystem responses, and global change. Annu. Rev. Environ. Resour. 2004, 29, 261–299. [Google Scholar] [CrossRef]
- Gutteridge, R.C.; Shelton, H.M. Animal Production Potential of Agroforestry Systems. In ACIAR proceedings; Australian Centre for International Agricultural Research: Canberra, Australia, 1994; p. 7. [Google Scholar]
- Foundjem-Tita, D.; Tchoundjeu, Z.; Speelman, S.; D’Haese, M.; Degrande, A.; Asaah, E.; van Huylenbroeck, G.; van Damme, P.; Ndoye, P. Policy and legal frameworks governing trees: Incentives or disincentives for smallholder tree planting decisions in Cameroon? Small-Scale For. 2013, 12, 489–505. [Google Scholar] [CrossRef]
- Lasco, R.; Delfino, R.; Catacutan, D.; Simelton, E.; Wilson, D. Climate risk adaptation by smallholder farmers: The roles of trees and agroforestry. Environ. Sustain. 2014, 6, 83–88. [Google Scholar] [CrossRef] [Green Version]
- Mbow, C.; Van Noordwijk, M.; Luedeling, E.; Neufeldt, H.; Minang, P.; Kowero, G. Agroforestry solutions to address food security and climate change challenges in Africa. Environ. Sustain. 2014, 6, 61–67. [Google Scholar] [CrossRef] [Green Version]
- Pattanayak, S.K.; Mercer, D.E.; Sills, E.; Yang, J.C. Taking stock of agroforestry adoption studies. Agrofor. Syst. 2003, 57, 173–186. [Google Scholar] [CrossRef]
- Knowler, D.; Bradshaw, B. Farmers’ adoption of conservation agriculture: A review and synthesis of recent research. Food Policy 2007, 32, 25–48. [Google Scholar] [CrossRef]
- Mercer, D.E. Adoption of agroforestry innovations in the tropics: A review. Agrofor. Syst. 2004, 61, 311–328. [Google Scholar]
- Oostendorp, R.H.; Zaal, F. Land acquisition and the adoption of soil and water conservation techniques: A Duration Analysis for Kenya and The Philippines. World Dev. 2012, 40, 1240–1254. [Google Scholar] [CrossRef]
- Nkamleu, G.B.; Manyong, V.M. Factors affecting the adoption of agroforestry practices by farmers in Cameroon. Small-Scale For. Econ. Manag. Policy 2005, 4, 135–148. [Google Scholar] [CrossRef]
- Jera, R.; Ajayi, O.C. Logistic modelling of smallholder livestock farmers’ adoption of tree-based fodder technology in Zimbabwe. Agric. Econ. Res. Policy Pract. South. Afr. 2008, 47, 379–392. [Google Scholar] [CrossRef]
- Cedamon, E.; Nuberg, I.; Pandit, B.H.; Shretsha, K.K. Adaptation factors and futures of agroforestry systems in Nepal. Agrofor. Syst. 2018, 92, 1437–1453. [Google Scholar] [CrossRef]
- Sabastian, G.E.; Yumm, A.; Roshetko, J.M.; Manalu, J.P.; Martini, E.; Perdana, A. Adoption of silvicultural practices in smallholder timber and NTFPs production systems in Indonesia. Agrofor. Syst. 2019, 93, 607–620. [Google Scholar] [CrossRef]
- Cuenca, N.; Chavarro, F.; Diaz, O. The bovine cattle in Colombia. Application of time series model to a national inventory. Rev. Fac. Cienc. Econ. 2008, 16, 165–177. [Google Scholar]
- DANE. Censo Nacional Agropecuario 1970–1971; Bogotá, D.E., Ed.; Departamento Administrativo Nacional de Estadística, DANE: Bogotá, Colombia, 1974. [Google Scholar]
- DANE. Censo Nacional Agropecuario 2014; Bogotá, D.E., Ed.; Departamento Administrativo Nacional de Estadística, DANE: Bogotá, Colombia, 2016. [Google Scholar]
- Tocancipá-Falla, J. A report on understanding the coffee crisis: Perspectives and challenges: A roundtable organized by the Cambridge University Colombian Society (CUCS). Camb. Anthropol. 2006, 25, 70–73. [Google Scholar]
- Vergara, W. La ganadería extensiva y el problema agrario. El reto de un modelo de desarrollo rural sustentable para Colombia. Rev. Cienc. Anim. 2010, 3, 45–53. [Google Scholar]
- UNDOC. Informe Ejecutivo Encuentro Nacional del Programa Presidencial Contra Cultivos Ilícitos (PCI) Erradicación, Prevención y Sustitución de Cultivos. Agencia Presidencial para la Acción Social y la Cooperación Intenacional—Accion Socia; Oficina de las Naciones Unidas contra la Droga y el Delito: Vienna, Austria, 2008. [Google Scholar]
- GEF. Mainstreaming Biodiversity in Sustainable Cattle Ranching, Project Summary. Available online: https://www.thegef.org/project/mainstreaming-biodiversity-sustainable-cattle-ranching (accessed on 3 March 2020).
- Nair, P.K.R.; Kumar, B.M.; Nair, V.D. Agroforestry as a strategy for carbon sequestration. J. Plant Nutr. Soil Sci. 2009, 172, 10–23. [Google Scholar] [CrossRef]
- Gebru, B.M.; Wang, S.W.; Kim, S.J.; Lee, W.K. Socio-ecological niche and factors affecting agroforestry practice adoption in different agroecologies of Southern Tigray, Ethiopia. Sustainability 2019, 11, 3729. [Google Scholar] [CrossRef] [Green Version]
- Fleming-Muñoz, D.; Preston, K.; Arratia-Solar, A. Value and impact of publicly funded climate change agricultural mitigation research: Insights from New Zealand. J. Clean. Prod. 2019, 248, 119249. [Google Scholar]
- Sánchez, M.; Rosales, M. Agroforestería Para la Producción Animal en América Latina; Organización de las Naciones Unidas para la Agricultura y la alimentación (FAO): Roma, Italy, 1999. [Google Scholar]
- Amézquita, M.C.; Ibrahim, M.; Llanderal, T.; Buurman, P.; Amézquita, E. Carbon sequestration in pastures, silvo-pastoral systems and forests in four regions of the Latin American tropics. J. Sustain. For. 2004, 21, 31–49. [Google Scholar] [CrossRef]
- Mutuo, P.K.; Cadisch, G.; Albrecht, A.; Palm, A.; Verchot, L. Potential of agroforestry for carbon sequestration and mitigation of greenhouse gas emissions from soils in the tropics. Nutr. Cycl. Agroecosystems 2005, 71, 43–54. [Google Scholar] [CrossRef]
- Jose, S. Agroforestry for ecosystem services and environmental benefits: An overview. Agrofor. Syst. 2009, 76, 1–10. [Google Scholar] [CrossRef]
- Bhagwat, S.A.; Willis, K.J.; Birks, J.B.; Whittaker, R.J. Agroforestry: A refuge for tropical biodiversity. Trends Ecol. Evol. 2008, 23, 261–267. [Google Scholar] [CrossRef] [PubMed]
- Fajardo, D.; Johnston-González, R.; Neira, L.; Chará, J.; Murgueitio, E. Influencia de sistemas silvopastoriles en la diversidad de aves en la cuenca del río La Vieja, Colombia. Revista Recursos Naturales y Ambiente 2009, 58, 9–16. [Google Scholar]
- Barragán, W.A. Sistemas silvopastoriles para mejorar la producción de leche y reducir el stress calórico en la Región Caribe Colombiana. Ph.D. Thesis, Faculty of Agronomy, Universidad de Antioquia, Medellín, Colombia, 2013. [Google Scholar]
- Armenteras, D.; Rodriguez, N.; Retana, J. Landscape dynamics in Northwestern Amazonia: An assessment of pastures, fire and illicit crops as drivers of tropical deforestation. PLoS ONE 2013, 8, e54310. [Google Scholar] [CrossRef] [Green Version]
- Dávalos, L.M.; Bejarano, A.C.; Hall, M.A.; Correa, H.L.; Corthals, A.; Espejo, O.J. Forests and Drugs: Coca-Driven Deforestation in Tropical Biodiversity Hotspots. Environ. Sci. Technol. 2011, 45, 1219–1227. [Google Scholar] [CrossRef]
- Sanchez-Cuervo, A.M.; Aide, T.M. Identifying hotspots of deforestation and reforestation in Colombia (2001–2010): Implications for protected areas. Ecosphere 2013, 4, 143. [Google Scholar] [CrossRef]
- Chará, J.; Murgueitio, E.; Zuluaga, A.; Giraldo, C. Ganadería Colombiana Sostenible; Fundación CIPAV: Cali, Colombia, 2011. [Google Scholar]
- Murgueitio, E.; Calle, Z.; Uribe, F.; Calle, A.; Solorio, B. Native trees and shrubs for the productive rehabilitation of tropical cattle ranching lands. For. Ecol. Manag. 2011, 261, 1654–1663. [Google Scholar] [CrossRef]
- Mahecha, L.; Gallego, L.; Pelaez, F. Situación actual de la ganadería de carne en Colombia y alternativas para impulsar su competitividad y sostenibilidad. Rev. Colomb. Cienc. Pecu. 2002, 15, 213–225. [Google Scholar]
- Alavalapati, J.R.R.; Luckert, M.K.; Gill, D.S. Adoption of agroforestry practices: A case study from Andhra Pradesh, India. Agrofor. Syst. 1995, 32, 1–14. [Google Scholar] [CrossRef]
- Adesina, A.A.; Mbila, D.; Nkamleu, G.B.; Endamana, D. Econometric analysis of the determinants of adoption of alley farming by farmers in the forest zone of southwest Cameroon. Agric. Ecosyst. Environ. 2000, 80, 255–265. [Google Scholar] [CrossRef]
- Neupane, R.P.; Sharma, K.R.; Thapa, G.B. Adoption of agroforestry in the hills of Nepal: A logistic regression analysis. Agric. Syst. 2002, 72, 177–196. [Google Scholar] [CrossRef]
- Lapar, M.L.A.; Ehui, S.K. Factors affecting adoption of dual-purpose forages in the Philippine uplands. Agric. Syst. 2004, 81, 95–114. [Google Scholar] [CrossRef]
- Cragg, J.G. Some Statistical Models for Limited Dependent Variables with Application to the Demand for Durable Goods. Econometrica 1971, 39, 829–844. [Google Scholar] [CrossRef]
- Newman, C.; Henchion, M.; Matthews, A. Infrequency of purchase and double-hurdle models of Irish households’ meat expenditure. Eur. Rev. Agric. Econ. 2001, 28, 393–419. [Google Scholar] [CrossRef]
- Gebremedhin, B.; Swinton, S.M. Investment in soil conservation in northern Ethiopia: The role of land tenure security and public programs. Agric. Econ. 2003, 29, 69–84. [Google Scholar] [CrossRef]
- Asfaw, S.; Shiferaw, B.; Simtowe, F. Does Technology Adoption Promote Commercialization? Evidence from Chickpea Technologies in Ethiopia. In CSAE 2010 Conference on Economic Development in Africa; University of Oxford: Oxford, UK, 2010; pp. 21–23. [Google Scholar]
- Wooldridge, J.M. Econometric Analysis of Cross Section and Panel Data; The MIT Press: Cambridge, MA, USA, 2002. [Google Scholar]
- Roco, L.; Engler, A.; Bravo-Ureta, B.; Jara-Rojas, R. Farm level adaptation decisions to face climatic change and variability: Evidence from Central Chile. Environ. Sci. Policy 2014, 44, 86–96. [Google Scholar] [CrossRef]
- Evans, J. Plantation Forestry in the Tropics: Tree Planting for Industrial, Social, Environmental, and Agroforestry Purposes; Oxford University Press: Oxford, UK, 1992. [Google Scholar]
- Boyd, C.; Turton, C.; Hatibu, N.; Mahoo, H.F.; Lazaro, E.; Rwehumbiza, F.B.; Makumbi, M. The Contribution of Soil and Water Conservation to Sustainable Livelihoods in Semi-Arid Areas of Sub-Saharan Africa; Network Paper-Agricultural Research and Extension Network, (102); ODI: London, UK, 2000. [Google Scholar]
- Kim, S.A.; Gillespie, J.M.; Paudel, K.P. The Effect of Economic Factors on the Adoption of Best Management Practices in Beef Cattle Production. In Proceedings of the SAEA Annual Meeting, Tulsa, Oklahoma, 14–18 February 2004; Volume 18. [Google Scholar]
- Rahelizatovo, N.C.; Gillespie, J.M. The adoption of best-management practices by Louisiana dairy producers. J. Agric. Appl. Econ. 2004, 36, 229–240. [Google Scholar] [CrossRef]
- Sood, K.K.; Mitchell, C.P. Identifying important biophysical and social determinants of on-farm tree growing in subsistence-based traditional agroforestry systems. Agrofor. Syst. 2009, 75, 175–187. [Google Scholar] [CrossRef]
- Patiño, M.; Moreira, V.; Echeverria, R.; Nahuelhual, L. Factores que determinan la adopción de prácticas de conservación del agua en sistemas ganaderos de la cuenca alta del Río Guarinó (Caldas, Colombia). Rev. Colom. Cienc. Pecua. 2012, 25, 46–55. [Google Scholar]
- Bottaro, G.; Roco, L.; Pettenella, D.; Micheletti, S.; Vanhulst, J. Forest plantations’ externalities: An application of the analytic hierarchy process to non-industrial forest owners in Central Chile. Forests 2018, 9, 141. [Google Scholar] [CrossRef] [Green Version]
- Roco, L.; Poblete, D.; Meza, F.; Kerrigan, G. Farmers’ options to address water scarcity in a changing climate: Case studies from two basins in Mediterranean Chile. Environ. Manag. 2016, 58, 958–971. [Google Scholar] [CrossRef]
- Lee, D.R. Agricultural sustainability and technology adoption: Issues and policies for developing countries. Am. J. Agric. Econ. 2005, 87, 1325–1334. [Google Scholar] [CrossRef]
- Manning, A.D.; Fischer, J.; Lindenmayer, D.B. Scattered trees are keystone structures–implications for conservation. Biol. Conserv. 2006, 132, 311–321. [Google Scholar] [CrossRef]
- Thacher, T.; Lee, D.R.; Schelhas, J.W. Farmer participation in reforestation incentive programs in Costa Rica. Agrofor. Syst. 1996, 35, 269–289. [Google Scholar] [CrossRef]
- Adesina, A.A.; Chianu, J. Determinants of farmers’ adoption and adaptation of alley farming technology in Nigeria. Agrofor. Syst. 2002, 55, 99–112. [Google Scholar] [CrossRef]
- Gbetibouo, G.A. Understanding Farmers’ Perceptions and Adaptations to Climate Change and Variability: The Case of the Limpopo Basin, South Africa; IFPRI discussion paper No. 849; International Food Policy Research Institute: Washington, DC, USA, 2009; p. 36. [Google Scholar]
- Armenteras, D.; Rodriguez, N.; Retana, J.; Morales, M. Understanding deforestation in montane and lowland forests of the Colombian Andes. Reg. Environ. Chang. 2011, 11, 693–705. [Google Scholar] [CrossRef]
- Ayuk, E.T. Adoption of agroforestry technology: The case of live hedges in the Central Plateau of Burkina Faso. Agric. Syst. 1997, 54, 189–206. [Google Scholar] [CrossRef]
- Calle, A.; Montagnini, F.; Zuluaga, A.F. Farmers’ perceptions of silvopastoral system promotion in Quindío, Colombia. Bois et Forets des Tropiques 2009, 300, 79–94. [Google Scholar] [CrossRef]
- Navas, A. Importancia de los sistemas silvopastoriles en la reducción del estrés calórico en sistemas de producción ganadera tropical. Rev. Med. Vet. 2010, 19, 113–122. [Google Scholar] [CrossRef]
- Rippstein, G.; Amezquita, E.; Escobar, G.; Grollier, C. Condiciones Naturales de la Sabana. In Agroecología y Biodiversidad de las Sabanas en los Llanos Orientales de Colombia; CIAT: Cali, Colombia, 2001. [Google Scholar]
- Dagang, A.B.; Nair, P.K.R. Silvopastoral research and adoption in Central America: Recent findings and recommendations for future directions. Agrofor. Syst. 2003, 59, 149–155. [Google Scholar] [CrossRef]
- Hogset, H. Social Networks and Technology Adoption; BASIS CRSP: Ithaca, NY, USA, 2005; BASIS Policy Brief No. 6. [Google Scholar]
- Bandiera, O.; Rasul, I. Social networks and technology adoption in Northern Mozambique. Econ. J. 2006, 116, 869–902. [Google Scholar] [CrossRef] [Green Version]
- Mekoya, A.; Oosting, S.J.; Fernandez-Rivera, S.; Van der Zijpp, A.J. Farmers’ perceptions about exotic multipurpose fodder trees and constraints to their adoption. Agrofor. Syst. 2008, 73, 141–153. [Google Scholar] [CrossRef]
- Thangata, P.H.; Alavalapati, J.R.R. Agroforestry adoption in southern Malawi: The case of mixed intercropping of Gliricidia sepium and maize. Agric. Syst. 2003, 78, 57–71. [Google Scholar] [CrossRef]
- Valdivia, C.; Barbieri, C.; Gold, M.A. Between forestry and farming: Policy and environmental implications of the barriers to agroforestry adoption. Can. J. Agric. Econ. 2012, 60, 155–175. [Google Scholar] [CrossRef]
- Pagiola, S.; Agostini, P.; Gobbi, J.; de Haan, C.; Ibrahim, M.; Murgueitio, E.; Ruíz, J.P. Paying for biodiversity conservation services: Experience in Colombia, Costa Rica, and Nicaragua. Mt. Res. Dev. 2005, 25, 206–211. [Google Scholar] [CrossRef]
- Johnson, R.J.; Doye, D.; Lalman, D.L.; Peel, D.S.; Curry Raper, K.; Chung, C. Factors affecting adoption of recommended management practices in stocker cattle production. J. Agric. Appl. Econ. 2010, 42, 15–30. [Google Scholar] [CrossRef] [Green Version]
- WWF. Colombia Viva: Un País Megadiverso de Cara al Futuro. Informe 2017; WWF-Colombia: Cali, Colombia, 2017. [Google Scholar]
- Boron, V.; Payán, E.; MacMillan, D.; Tzanopoulos, J. Achieving sustainable development in rural areas in Colombia: Future scenarios for biodiversity conservation under land use change. Land Use Policy 2016, 59, 27–37. [Google Scholar] [CrossRef] [Green Version]
- Furumo, P.R.; Lambin, E.F. Scaling up zero-deforestation initiatives through public-private partnerships: A look inside post-conflict Colombia. Glob. Environ. Chang. 2020, 62, 102055. [Google Scholar] [CrossRef]
Regions | Departments | Altitude (m.a.s.l.) | Rainfall (mm Per Year) | Average Temperature (°C) | Climatic Classification |
---|---|---|---|---|---|
Cesar River Valley | CesarLa Guajira | 20–175 | 1300–1926 | 26–29 | Hot and dry |
Lower Magdalena River Basin | BolivarMagdalena | 20–250 | 810–2100 | 26–28 | Hot, very dry, dry, and wet |
Dairy Farm Region | BoyacáSantander | 1290–2800 | 726–3281 | 13–21 | Cold and dry, cold and wet, temperate wet and very wet |
Coffee region and Cauca River Valley | Caldas, Quindío, Risaralda, Tolima, Valle del Cauca | 915–2900 | 966–2829 | 13–24 | Cold and wet, temperate wet and very wet |
Low Foothills of Eastern Cordillera | Meta | 220–600 | 2613–5200 | 24–27 | Hot wet and very wet |
VARIABLE | DESCRIPTION | MEAN | STD DEV |
---|---|---|---|
Dependent Variables | |||
First decision (Adopt) | Dummy Variable = 1, if cattle farmer adopts at least one practice, 0 otherwise | 0.68 | 0.46 |
Second decision (Intensity) | Number of practices adopted by cattle farmer | 1.03 | 0.92 |
Independent Variables | |||
Age | Age of cattle farmer, in years | 55.4 | 12.6 |
Education | Level of education: 1 = incomplete elementary; 2 = complete elementary; 3 = incomplete secondary; 4 = complete secondary; 5 = technical education; 6 = professional higher education | 3.8 | 1.9 |
Flat | Dummy variable = 1 if more than 50% of farm is flat, 0 otherwise | 0.44 | 0.49 |
Spring | Dummy variable = 1 if the farm has water spring, 0 otherwise | 0.53 | 0.49 |
Herd Size | Number of cattle heads | 65.8 | 119.2 |
Number of paddocks | Number of paddocks in the farm | 12.5 | 20.4 |
Technical Assistance | Dummy variable = 1 if the farmer has technical assistance, 0 otherwise | 0.39 | 0.48 |
Participation in Forestry project | Dummy variable = 1 if the farmer participates or has participated in forestry project, 0 otherwise | 0.25 | 0.43 |
Association Member | Dummy variable = 1 if the farmer belongs to any association or group, 0 otherwise | 0.33 | 0,47 |
Use of credit | Dummy variable = 1 if the farmer has asked for a loan in the last five years, 0 otherwise | 0.69 | 0.46 |
Eco-region | |||
Cesar River Valley | Dummy variable = 1 if the farm is located in the departments of Cesar or La Guajira, 0 otherwise (omitted) | 0.19 | 0.39 |
Lower Magdalena River Basin | Dummy variable = 1 if the farm is located in the departments of Bolivar or Magdalena, 0 otherwise | 0.12 | 0.32 |
Dairy Farm Region | Dummy variable = 1 if farm is located in the departments of Boyacá and Santander, 0 otherwise | 0.20 | 0.40 |
Coffee region and Cauca River Valley | Dummy variable = 1 if farm is located in the departments of Caldas, Quindío, Risaralda, Tolima or Valle del Cauca, 0 otherwise | 0.34 | 0.47 |
Low Foothills of Eastern Cordillera | Dummy variable = 1 if farm is located in the department of Meta, 0 otherwise | 0.13 | 0.34 |
Production systems | |||
Meat | Dummy variable = 1 if meat production systems is in place, 0 otherwise | 0.23 | 0.42 |
Dual Purpose | Dummy variable = 1 if dual purpose production system is in place, 0 otherwise | 0.64 | 0.47 |
Milk | Dummy variable = 1 if milk production system is in place, 0 otherwise (omitted) | 0.11 | 0.31 |
VARIABLE | POISSON | DOUBLE HURDLE | ||||
---|---|---|---|---|---|---|
LOGIT | ZERO TRUNCATED | |||||
Coef. | Marg. Eff. | Coef. | Marg. Eff. | Coef. | Marg. Eff. | |
Rob. Std. Err. | Std. Err. | Rob. Std. Err. | Std. Err. | Rob. Std. Err. | Std. Err. | |
Age | −0.001 | −0.001 | −0.009 ** | −0.002 ** | 0.004 | 0.003 |
(0.002) | (0.002) | (0.005) | (0.001) | (0.003) | (0.002) | |
Education | −0.007 | −0.007 | −0.036 | −0.008 | 0.013 | 0.011 |
(.0012) | (0.012) | (0.032) | (0.007) | (0.020) | (0.017) | |
Flat | −0.201 * | −0.198 * | −0.666 * | −0.143 * | 0.014 | 0.012 |
(0.057) | (0.055) | (0.144) | (0.031) | (0.087) | (0.073) | |
Water shed | 0.184 * | 0.183 * | 0.222 | 0.047 | 0.267 * | 0.221 * |
(0.056) | (0.056) | (0.136) | (0.029) | (0.093) | (0.075) | |
Herd size | 0.001 * | 0.001 | 0.002 * | 0.001 * | 0.001 ** | 0.001 ** |
(0.001) | (0.001) | (0.001) | (0.001) | (0.001) | (0.001) | |
Number of plots | −0.001 | −0.001 | −0.006 *** | −0.001 ** | −0.001 | −0.001 |
(0.001) | (0.001) | (0.003) | (0.001) | (0.001) | (0.001) | |
Technical assistance | −0.033 | −0.033 | 0.082 | 0.017 | −0.160 ** | −0.132 ** |
(0.046) | (0.046) | (0.122) | (0.026) | (0.077) | (0.062) | |
Forestry project participation | 0.293 * | 0.316 * | 0.486 * | 0.098 * | 0.399 * | 0.368 * |
(0.049) | (0.057) | (0.142) | (0.027) | (0.077) | (0.076) | |
Association member | 0.086 *** | 0.087 | 0.142 | 0.030 | 0.104 | 0.089 |
(0.046) | (0.047) | (0.124) | (0.026) | (0.074) | (0.064) | |
Use of credit | 0.095 ** | 0.093 | 0.239 ** | 0.051 ** | 0.072 | 0.059 |
(0.047) | (0.045) | (0.121) | (0.026) | (0.078) | (0.064) | |
Lower Magdalena River Basin | 0.157 ** | 0.166 | 0.398 *** | 0.079 ** | 0.162 | 0.144 |
(0.076) | (0.086) | (0.227) | (0.042) | (0.107) | (0.101) | |
Dairy farm region | −0.629 * | −0.528 * | −0.842 * | −0.192* | −0.895 * | −0.579 * |
(0.091) | (.064) | (0.225) | (0.053) | (0.166) | (0.079) | |
Coffee region | −0.310 * | −0.295 * | −0.231 | −0.050 | −0.526 * | −0.415 * |
and Cauca River Valley | (0.075) | (0.068) | (0.202) | (0.044) | (0.117) | (0.086) |
Low Foothills of | −0.298 * | −0.268 * | −0.075 | −0.016 | −0.668 * | −0.446 * |
Eastern Cordillera | (0.083) | (0.067) | (0.208) | (0.045) | (0.142) | (0.074) |
Meat | 0.136 | 0.141 | 0.466 ** | 0.094 ** | −0.142 | −0.115 |
(0.096) | (0.103) | (0.200) | (0.038) | (0.168) | (0.132) | |
Dual purpose | 0.120 | 0.118 | 0.476 ** | 0.103 ** | −0.179 | −0.155 |
(0.093) | (0.089) | (0.192) | (0.042) | (0.161) | (0.145) | |
Constant | 0.043 | 0.965 ** | −0.170 | |||
(0.173) | (0.430) | (0.288) | ||||
N | 1605 | 1605 | 1095 | |||
Wald Chi2 (16) | 199.7 | 104.2 | 128.8 | |||
Pseudo R2 | 0.033 | 0.057 | 0.131 | |||
Log Pseudolikelihood | −1989.3 | −945.9 | −999.8 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jara-Rojas, R.; Russy, S.; Roco, L.; Fleming-Muñoz, D.; Engler, A. Factors Affecting the Adoption of Agroforestry Practices: Insights from Silvopastoral Systems of Colombia. Forests 2020, 11, 648. https://doi.org/10.3390/f11060648
Jara-Rojas R, Russy S, Roco L, Fleming-Muñoz D, Engler A. Factors Affecting the Adoption of Agroforestry Practices: Insights from Silvopastoral Systems of Colombia. Forests. 2020; 11(6):648. https://doi.org/10.3390/f11060648
Chicago/Turabian StyleJara-Rojas, Roberto, Soraya Russy, Lisandro Roco, David Fleming-Muñoz, and Alejandra Engler. 2020. "Factors Affecting the Adoption of Agroforestry Practices: Insights from Silvopastoral Systems of Colombia" Forests 11, no. 6: 648. https://doi.org/10.3390/f11060648
APA StyleJara-Rojas, R., Russy, S., Roco, L., Fleming-Muñoz, D., & Engler, A. (2020). Factors Affecting the Adoption of Agroforestry Practices: Insights from Silvopastoral Systems of Colombia. Forests, 11(6), 648. https://doi.org/10.3390/f11060648