Contribution of Advanced Regeneration of Pinus radiata D. Don. to Transpiration by a Fragment of Native Forest in Central Chile Is out of Proportion with the Contribution to Sapwood Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Rainfall Measurements
2.3. Stand Characteristics
2.4. Selection of Trees for Transpiration
2.5. Transpiration
2.6. Stand Transpiration
2.7. Data Analysis
3. Results
3.1. Weather Conditions
3.2. Tree Size and Numbers
3.3. Basal Area and Sapwood Area
3.4. Tree and Stand Sap Flux Density
3.5. Summary of Stand Characteristics and Transpiration
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wilson, K.; Newton, A.; Echeverría, C.; Weston, C.; Burgman, M. A vulnerability analysis of the temperate forests of south central Chile. Biol. Conserv. 2005, 122, 9–21. [Google Scholar] [CrossRef]
- Fajardo, A.; Alaback, P. Effects of natural and human disturbances on the dynamics and spatial structure of Nothofagus glauca in south-central Chile. J. Biogeogr. 2005, 32, 1811–1825. [Google Scholar] [CrossRef]
- Fuentes, E.R.; Hajek, E.R. Patterns of Landscape Modification in Relation to Agricultural Practice in Central Chile. Environ. Conserv. 1979, 6, 265–271. [Google Scholar] [CrossRef]
- Altieri, M.A.; Rojas, A. Ecological Impacts of Chile’s Neoliberal Policies, with Special Emphasis on Agroecosystems. Environ. Dev. Sustain. 1999, 1, 55–72. [Google Scholar] [CrossRef]
- Bustamante, R.O.; Simonetti, J.A. Is Pinus radiata invading the native vegetation in central Chile? Demographic responses in a fragmented forest. Biol. Invasions 2005, 7, 243–249. [Google Scholar] [CrossRef]
- De la Barrera, F.; Barraza, F.; Favier, P.; Ruiz, V.; Quense, J. Megafires in Chile 2017: Monitoring multiscale environmental impacts of burned ecosystems. Sci. Total Environ. 2018, 637–638, 1526–1536. [Google Scholar] [CrossRef]
- Rubilar, R.; Blevins, L.; Toro, J.; Vita, A.; Muñoz, F. Early response of Pinus radiata plantations to weed control and fertilization on metamorphic soils of the Coastal Range, Maule Region, Chile. Bosque 2008, 29, 74–84. [Google Scholar] [CrossRef]
- Armesto, J.; Arroyo, M.; Hinojosa, L. The Mediterranean Climate of Central Chile. In The Physical Geography of South America; Vleben, T., Young, K., Orme, A., Eds.; Oxford University Press: New York, NY, USA, 2007; pp. 184–199. [Google Scholar]
- White, D.A.; Balocchi-Contreras, F.; Silberstein, R.P.; Ramirez de Arellano, P. The effect of wildfire on the structure and water balance of a high conservation value Hualo (Nothofagus glauca (Phil.) Krasser.) forest in central Chile. For. Eco. Manage. Under Review.
- Gana, F.P.; Herve, A.F. Geologia Del Basamento Cristalino en la Cordillera de la Costa Entre Los Rios Mataquito y Maule, vii region. Rev. Geol. Chile 1982, 19–20, 39–56. [Google Scholar]
- Burgess, S.S.O.; Adams, M.A.; Turner, N.C.; Beverly, C.R.; Ong, C.K.; Khan, A.A.H.; Bleby, T.M. An improved heat pulse method to measure low and reverse rates of sap flow in woody plants. Tree Physiol. 2001, 21, 589–598. [Google Scholar] [CrossRef]
- Dunin, F.X.; MacKay, S.M. Evaporation of eucalypt and coniferous forest communities. In Proc. First Nat. Symp. Forest Hydrology Inst. of Engineers; Barton, ACT. Publ 82/6: Canberra, Australia, 1982; pp. 18–25. [Google Scholar]
- White, D.A.; Beadle, C.L.; Battaglia, M.; Benyon, R.G.; Dunin, F.X.; Medhurst, J.L. A Physiological Basis for Management of Water Use by Tree Crops; Water and Salinity Issues in Agroforestry No 7; AFFA; JVAP; CSIRO FFP: Melbourne, Australia, 2001. [Google Scholar]
- Gentilli. Climate of the Jarrah foest. In The Jarrah Forest—A Complex Mediterranean Ecosystem; Dell, J.B., Havel, J.J., Malacjuk, N., Eds.; Kluwer: Dordercht, The Netherlands, 1989; pp. 23–40. [Google Scholar]
- Passioura, J. Increasing crop productivity when water is scarce—From breeding to field management. Agric. Water Manag. 2006, 80, 176–196. [Google Scholar] [CrossRef] [Green Version]
- White, D.A.; Battaglia, M.; Macfarlane, C.; Mummery, D.; McGrath, J.F.; Beadle, C.L. Selecting species for recharge management in Mediterranean south western Australia–some ecophysiological considerations. Plant Soil 2003, 257, 283–293. [Google Scholar] [CrossRef]
- White, D.A.; Crombie, D.S.; Kinal, J.; Battaglia, M.; McGrath, J.F.; Mendharn, D.S.; Walker, S.N. Managing productivity and drought risk in Eucalyptus globulus plantations in south-western Australia. For. Ecol. Manag. 2009, 259, 33–44. [Google Scholar] [CrossRef]
- White, D.A.; McGrath, J.F.; Ryan, M.G.; Battaglia, M.; Mendham, D.S.; Kinal, J.; Downes, G.M.; Crombie, D.S.; Hunt, M.A. Managing for water-use efficient wood production in Eucalyptus globulus plantations. For. Ecol. Manag. 2014, 331, 272–280. [Google Scholar] [CrossRef]
- Williams, C.J.R. Climate Change in Chile: An Analysis of State-of-the-Art Observations, Satellite-Derived Estimates and Climate Model Simulations. J. Earth Sci. Clim. Chang. 2017, 8. [Google Scholar] [CrossRef]
- Vila, M.; Weiner, J. Are invasive plant species better competitors than native plant species? evidence from pair-wise experiments. OIKOS 2004, 105, 229–238. [Google Scholar] [CrossRef]
- Forsyth, G.; Richardson, D.; Brown, P.; van Wilgen, B. A rapid assessment of the invasive status of Eucalyptus species in two South African provinces. S. Afr. J.Sci. 2004, 100, 75–77. [Google Scholar]
- Rouget, M.; Richardson, D.; Nel, J.; van Wilgen, B. Commercially important trees as invasive aliens – towards spatially explicit risk assessment at a national scale. Biol. Invasions 2002, 4, 397–412. [Google Scholar] [CrossRef]
- Watt, M.S.; Whitehead, D.; Mason, E.G.; Richardson, B.; Kimberley, M.O. The influence of weed competition for light and water on growth and dry matter partitioning of young Pinus radiata, at a dryland site. For. Ecol. Manag. 2003, 183, 363–376. [Google Scholar] [CrossRef]
- Hunt, M.A.; Battaglia, M.; Davidson, N.J.; Unwin, G.L. Competition between plantation Eucalyptus nitens and Acacia dealbata weeds in northeastern Tasmania. For. Ecol. Manag. 2006, 233, 260–274. [Google Scholar] [CrossRef]
- Roberts, S.; Barton-Johnson, R.; McLarin, M.; Read, S. Predicting the water use of Eucalyptus nitens plantation sites in Tasmania from inventory data, and incorporation of water use into a forest estate model. For. Ecol. Manag. 2015, 343, 110–122. [Google Scholar] [CrossRef]
- Benyon, R.G.; Lane, P.N.J.; Jaskierniak, D.; Kuczera, G.; Haydon, S.R. Use of a forest sapwood area index to explain long-term variability in mean annual evapotranspiration and streamflow in moist eucalypt forests. Water Resour. Res. 2015, 51, 5318–5331. [Google Scholar] [CrossRef]
- Bucci, S.J.; Goldstein, G.; Meinzer, F.C.; Scholz, F.G.; Franco, A.C.; Bustamante, M. Functional convergence in hydraulic architecture and water relations of tropical savanna trees: From leaf to whole plant. Tree Physiol. 2004, 24, 891–899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meinzer, F.C. Functional convergence in plant responses to the environment. Oecologia 2003, 134, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Meinzer, F.C.; Clearwater, M.J.; Goldstein, G. Water transport in trees: Current perspectives, new insights and some controversies. Environ. Exp. Bot. 2001, 45, 239–262. [Google Scholar] [CrossRef]
- Carter, J.L.; White, D.A. Plasticity in the Huber value contributes to homeostasis in leaf water relations of a mallee Eucalypt with variation to groundwater depth. Tree Physiol. 2009, 29, 1407–1418. [Google Scholar] [CrossRef] [Green Version]
- Fan, D.-Y.; Jie, S.-L.; Liu, C.-C.; Zhang, X.-Y.; Xu, X.-W.; Zhang, S.-R.; Xie, Z.-Q. The trade-off between safety and efficiency in hydraulic architecture in 31 woody species in a karst area. Tree Physiol. 2011, 31, 865–877. [Google Scholar] [CrossRef] [Green Version]
- Pollmann, W.; Veblen, T.T. Nothofagus Regeneration Dynamics in South-Central Chile: A Test of a General Model. Ecol. Monogr. 2004, 74, 615–634. [Google Scholar] [CrossRef]
- Armesto, J.; Bustamante-Sánchez, M.; Díaz, M.; González, M.; Holz, A.; Nuñez-Avila, M.; Smith-Ramírez, C. Fire Disturbance Regimes, Ecosystem Recovery and Restoration Strategies in Mediterranean and Temperate Regions of Chile. In Fire Effects on Soils and Restoration Strategies; Pontificia Universidad Católica de Chile: Santiago, Chile, 2009; pp. 537–567. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
White, D.A.; Silberstein, R.P.; Balocchi-Contreras, F.; Quiroga, J.J.; Ramírez de Arellano, P. Contribution of Advanced Regeneration of Pinus radiata D. Don. to Transpiration by a Fragment of Native Forest in Central Chile Is out of Proportion with the Contribution to Sapwood Area. Forests 2020, 11, 187. https://doi.org/10.3390/f11020187
White DA, Silberstein RP, Balocchi-Contreras F, Quiroga JJ, Ramírez de Arellano P. Contribution of Advanced Regeneration of Pinus radiata D. Don. to Transpiration by a Fragment of Native Forest in Central Chile Is out of Proportion with the Contribution to Sapwood Area. Forests. 2020; 11(2):187. https://doi.org/10.3390/f11020187
Chicago/Turabian StyleWhite, Don A., Richard P. Silberstein, Francisco Balocchi-Contreras, Juan Jose Quiroga, and Pablo Ramírez de Arellano. 2020. "Contribution of Advanced Regeneration of Pinus radiata D. Don. to Transpiration by a Fragment of Native Forest in Central Chile Is out of Proportion with the Contribution to Sapwood Area" Forests 11, no. 2: 187. https://doi.org/10.3390/f11020187
APA StyleWhite, D. A., Silberstein, R. P., Balocchi-Contreras, F., Quiroga, J. J., & Ramírez de Arellano, P. (2020). Contribution of Advanced Regeneration of Pinus radiata D. Don. to Transpiration by a Fragment of Native Forest in Central Chile Is out of Proportion with the Contribution to Sapwood Area. Forests, 11(2), 187. https://doi.org/10.3390/f11020187