Next Article in Journal
Temperature Sensitivity in Individual Components of Ecosystem Respiration Increases along the Vertical Gradient of Leaf–Stem–Soil in Three Subtropical Forests
Previous Article in Journal
Wood in the Construction of Forest Roads on Poor-bearing Road Subgrades
Previous Article in Special Issue
Potential Solar Radiation as a Driver for Bark Beetle Infestation on a Landscape Scale
Open AccessArticle

Regional Climate, Edaphic Conditions and Establishment Substrates Interact to Influence Initial Growth of Black Spruce and Jack Pine Planted in the Boreal Forest

1
Institut de recherche sur les forêts (IRF), Université du Québec en Abitibi-Témiscamingue, 445 boul. de l’Université, Rouyn-Noranda, QC J9X 5E4, Canada
2
Natural Resources Canada, Canadian Forest Service, Canadian Wood Fibre Centre, 1055 rue du PEPS, P.O. Box 10380, Stn Sainte Foy, QC G1V 4C7, Canada
*
Author to whom correspondence should be addressed.
Forests 2020, 11(2), 139; https://doi.org/10.3390/f11020139
Received: 2 December 2019 / Revised: 21 January 2020 / Accepted: 22 January 2020 / Published: 24 January 2020
In eastern Canada, spruces (Picea spp.) and pines (Pinus spp.) are among the main commercial species being logged for their lumber or wood fiber. Annually, about 175 million seedlings are planted in areas totaling ~100,000 ha. Appropriate microsite selection is essential during reforestation operations, given that it can improve the chances of survival and initial growth of the seedlings. In fir (Abies spp.) and spruce forests of eastern Canada, the optimal characteristics of establishment microsites have yet to be identified; these would be determined by different physical and climatic variables operating at several scales. Our study determined the influence of climatic (regional-scale), edaphic (stand-scale), local (microsite-scale) and planting conditions on the establishment substrate and initial growth of black spruce (Picea mariana Britton, Sterns and Poggenb.) and jack pine (Pinus banksiana Lamb.). Substrate characterization and growth monitoring (three growing seasons) for the two species were conducted on 29 planted cutblocks that were distributed over an east–west climatic gradient (precipitation and temperature) in the balsam fir and black spruce–feather moss forests of Quebec (Canada). Linear mixed models and multivariate analyses (PCAs) determined the effects of climatic, edaphic and micro-environmental variables and their interactions on the establishment substrate and seedling initial growth. The predictive models explained, respectively, 61% and 75% of the growth variability of black spruce and jack pine. Successful establishment of black spruce and jack pine depended upon regional conditions of precipitations and temperature, as well as on their interactions with stand-scale edaphic variables (surface deposit, drainage and slope) and local variables (micro-environmental) at the microsite-scale (establishment substrate types and substrate temperature). Mineral, organo-mineral and organic establishment substrates exerted mixed effects on seedling growth according to regional precipitation and temperature conditions, as well as their interactions with edaphic and local variables at the stand and microsite-scales, respectively. View Full-Text
Keywords: climate; spruce stands; fir stands; seedling growth; soil; establishment substrate; multi-scale climate; spruce stands; fir stands; seedling growth; soil; establishment substrate; multi-scale
Show Figures

Graphical abstract

MDPI and ACS Style

Henneb, M.; Thiffault, N.; Valeria, O. Regional Climate, Edaphic Conditions and Establishment Substrates Interact to Influence Initial Growth of Black Spruce and Jack Pine Planted in the Boreal Forest. Forests 2020, 11, 139.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop