Wood in the Construction of Forest Roads on Poor-bearing Road Subgrades
Abstract
:1. Introduction
The Aim and Scope of the Study
- identification of the technologies and applied solutions used to reinforce road subgrades with poor load-bearing capacity using timber logs;
- analysis of the existing road surface construction over a substrate of timber logs;
- analysis and testing of wood samples taken from selected road substrates.
2. Material and Methods
- the value and character must indicate a sufficiently high stream a heavy loads (so that the section is a transport road and not an operating/harvesting track),
- heavy vehicles must use the road (high-tonnage timber transport vehicles or others),
- the minimum width over which the reinforcement is applied is the width of the roadway,
- the timber logs were covered with foreign material or native soil,
- the character of the forest habitats is varied,
- the length of the reinforced section is appropriate for the study.
- level 1—if the value of the given property has not changed (fluctuations up to 5%), it is full value wood (undegraded);
- level 2—if the value of the given property is reduced by 5–25%, the wood is partially degraded;
- level 3—if the value of the property is reduced by 25–50%, the wood is severely degraded,
- level 4—if the value of the property is reduced by more than 50%, the wood is destroyed.
3. Results and Discussion
Test Sections
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Miler, A.T.; Czerniak, A.; Grajewski, S.; Kamiński, B.; Okoński, B. Marshlands of “LasyRychtalskie” forest promotion complex—Present state and perspective of changes. Infrastruct. Ecol. Rural. Areas 2007, 3, 21–36. Available online: http://www.infraeco.pl/pl/art/a_15119.htm?plik=289 (accessed on 14 December 2019).
- Saunders, S.C.; Mislivets, M.R.; Chen, J.; Cleland, D.T. Effects of roads on landscape structure within nested ecological units of the Northern Great Lakes Region, USA. Biol. Conserv. 2002, 103, 209–225. [Google Scholar] [CrossRef]
- Demi, M. Impacts, management and functional planning criterion of forest road network system in Turkey. Transp. Res. Part A Policy Pract. 2007, 41, 56–68. [Google Scholar] [CrossRef]
- Lugo, A.E.; Gucinski, H. Function, effects, and management of forest roads. For. Ecol. Manag. 2000, 133, 249–262. [Google Scholar] [CrossRef]
- Dunn, R.R.; Danoff-Burg, J.D. Road size and carrion beetle assemblages in a New York forest. J. Insect Conserv. 2007, 11, 325–332. [Google Scholar] [CrossRef]
- Devlin, G.J.; McDonnell, K.; Ward, S. Timber haulage routing in Ireland: an analysis using GIS and GPS. J. Transp. Geogr. 2008, 16, 63–72. [Google Scholar] [CrossRef] [Green Version]
- Palander, T.; Kärhä, K. Potential traffic levels after increasing the maximum vehicle weight in environmentally efficient transportation system: The Case of Finland. J. Sustain. Dev. Energy Water Environ. Syst. 2017, 5, 417–429. [Google Scholar] [CrossRef]
- Trzciński, G.; Moskalik, G.; Wojtan, R. Total Weight and Axle Loads of Truck Units in the Transport of Timber Depending on the Timber Cargo. Forests 2018, 9, 164. [Google Scholar] [CrossRef] [Green Version]
- Munro, R. Dealing with Bearing Capacity Problems on Low Volume Roads Constructed on Peat [online]. ROADEX II Project. Scotland. Available online: http://www.roadex.org/wp-content/uploads/2014/01/2_5-Roads-on-Peat_l.pdf (accessed on 14 December 2019).
- O’Mahony, M.J.; Ueberschaer, A.; Owende, P.M.O.; Ward, S.M. Bearing capacity of forest access roads built on peat soils. J. Terramechanics 2000, 37, 127–138. [Google Scholar] [CrossRef]
- Martin, A.M.; Owende, P.M.O.; O’Mahony, M.J.; Ward, S.M. Estimation of the serviceability of forest access roads. J. For. Eng. 1999, 10, 55–61. [Google Scholar]
- Trzciński, G.; Kozakiewicz, P.; Selwakowski, R. The technical aspects of using timber in the construction of forest roads. J. Water Land Dev. 2017, 34, 241–247. [Google Scholar] [CrossRef]
- EN 335 Durability of Wood and Wood-Based Products—Use Classes: Definitions, Application to Solid Wood and Wood-Based Products; CEN (European Committee for Standardization): Brussels, Belgium, 2013.
- EN 350 Durability of Wood and Wood-Based Products—Testing and Classification of the Durability to Biological Agents of Wood and Wood-Based Materials; CEN (European Committee for Standardization): Brussels, Belgium, 2016.
- Jensen, P.; Gregory, D.J. Selected physical parameters to characterize the state of preservation of waterlogged archaeological wood: A practical guide for their determination. J. Archaeol. Sci. 2006, 33, 551–559. [Google Scholar] [CrossRef]
- Kim, Y.S.; Singh, A.P. Micromorphological characteristics of wood biodegradation in wet environments: A review. IAWA J. 2000, 21, 135–155. [Google Scholar] [CrossRef]
- Singh, A.P. A review of microbial decay types found in wooden objects of cultural heritage recovered from buried and waterlogged environments. J. Cult. Herit. 2012, 13, 16–20. [Google Scholar]
- Zborowska, M.; Babiński, L.; Gajewska, J.; Waliszewska, B.; Prądzyński, W. Physical and chemical properties of contemporary pine wood (Pinus sylvestris L.) in conditions of a wet archaeological site in Biskupin. Folia For. Pol. B 2007, 38, 13–26. [Google Scholar]
- Mańkowski, P.; Kozakiewicz, P.; Drożdżek, M. The selected properties of fossil oak wood from medieval burgh in Płońsk. Wood Res. 2016, 61, 287–298. Available online: http://www.centrumdp.sk/wr/201602/12.pdf (accessed on 14 December 2019).
- EN 252 Field Test Method for Determining the Relative Protective Effectiveness of a Wood Preservative in Ground Contact; CEN (European Committee for Standardization): Brussels, Belgium, 2014.
- PN-D-04110 Fizyczne i mechaniczne własności drewna—Badanie procentowego udziału drewna wczesnego i późnego (in Polish); Physical and mechanical properties of wood—Investigation of the percentage early and late wood; PKN (Polski Komitet Normalizacyjny): Warsaw, Poland, 1995.
- Vorreiter, L. Holztechnologisches Handbuch. Band I: Allgemeines, Holzkunde, Holzschutz und Holzvergütung; Verlag Georg Fromme& Co.: Wien, Austria, 1949. [Google Scholar]
- Kollmann, F.; Cote, W. Principles of Wood Science and Technology. Volume I: Solid Wood; Springer: Berlin/Heidelberg, Germany; New York, NY, USA; Tokyo, Japan, 1984. [Google Scholar]
- Trendelenburg, R.; Mayer-Wegelin, H. Das Holz als Rohstoff. 2. Vollig überarbeitete Ahflage; Carl Hanser Verlag: Munchen, Germany, 1955. [Google Scholar]
- Dzbeński, W. Kryteria oceny technicznych własności dębowego drewna wykopaliskowego. Zeszyty Naukowe Szkoly Glownej Gospodarstwa Wiejskiego, Lesnic-two (Forrestry) 1970, 14, 171–190. [Google Scholar]
- Krzysik, F. Nauka o Drewnie. (in Polish) Wood Science; PWN: Warsaw, Poland, 1978. [Google Scholar]
- ISO 3129. Wood-Sampling Methods and General Requirements for Physical and Mechanical Testing Of Small Clear Wood Specimens; ISO (International Organization for Standardization): Geneva, Switzerland, 2012.
- ISO 13061-2. Physical and Mechanical Properties of Wood—Test Methods for Small Clear Wood Specimens. Part 2: Determination of Density for Physical and Mechanical Tests; ISO (International Organization for Standardization): Geneva, Switzerland, 2014.
- ISO/DIS 13061-17. Physical and Mechanical Properties of Wood—Test Methods for Small Clear Wood Specimens—Part 17: Determination of Ultimate Stress in Compression Parallel To Grain; ISO (International Organization for Standardization): Geneva, Switzerland, 2015.
- EN 13556 Round and Sawn Timber—Nomenclature of Timbers Used in Europe; CEN (European Committee for Standardization): Brussels, Belgium, 2003.
- Kozakiewicz, P. Wpływ Temperatury i Wilgotności na Wytrzymałość na ściskanie wzdłuż włókien wybranych rodzajów drewna o zróżnicowanej gęstości i budowie anatomicznej. Effect of Temperature and Moisture Content on Compression Strength Parallel to the Grain of Selected Species of Wood with Variable Density and Anatomical Structures; SGGW: Warsaw, Poland, 2010. [Google Scholar]
- Kozakiewicz, P.; Matejak, M. Klimat a Drewno Zabytkowe. Dawna i Współczesna Wiedza o drewnie. Climate and Antique Wood—Past and Contemporary Knowledge about Wood; SGGW: Warsaw, Poland, 2013. [Google Scholar]
- Roszyk, E. Wilgotnościowe i ultrastrukturalne uwarunkowania parametrów Mechanicznych Drewna Sosny (Pinus sylvestris L.) rozciąganego wzdłuż włókien. Mechanical Parameters of Scots Pine Wood (Pinus sylvestris L.) upon Tensile Stress along the Grains in Relation to its Moisture Content and Ultrastructure; Poznan University of Life Sciences: Poznan, Poland, 2016. [Google Scholar]
No. | Forest District and Mark | Type of Subgrade | Construction of Pavement | Year of Construction/Reconstruction | Species of Wood Used in the Road Construction |
---|---|---|---|---|---|
1 | Stuposiany (SW) | medium clay on heavy clay/heavy rocky clay | Transverse logs of 10–15 cm diameter laid on five longitudinal logs of 30 cm diameter filled with aggregate; 15 cm of aggregate 0/63 and 10 cm of aggregate 0/31.5 | 1991/1992 | Norway spruce |
2 | Lutowiska (LW) | silt loam/medium clay and heavy rocky clay | Transverse logs of 10–12 cm diameter on subsoil; 25–30 cm of aggregate | 1977 | grey alder |
3 | Koło–Rogóźno (KR1W) | sandy and lightclay | Transverse logs of 12–15 cm diameter and 2.6–2.8 m in length; 15 cm of 0/31.5 gravel (3–5 cm in many places) | 2011 | Scots pine |
4 | Koło–Rogóźno (KR2W) | sandy and lightclay | Logs (tree branches) of 5–10 cm diameter covered with soil and in some places aggregate | 1981 | European pedunculate oak |
5 | Koło–Lipie Góry (KLG1W) | clayey sand on loose sands | Transverse logs of 12–16 cm diameter and 3 m long filled with sand-gravel (gravel) at various depths from 3–15 cm | 2012 | Scots pine |
6 | Koło–Lipie Góry (KLG2W) | poorly clayey sands/loose sands | Transverse logs of 12–16 cm diameter and 3 m long filled with sand-gravel (gravel) at various depths from 3–15 cm | 2012 | Scots pine |
7 | Olsztyn (OGW) | transition peat peat soils | 12–15 cm of sand on brushwood mattresses; timber grillage (4 longitudinal logs of 13–15 cm diameter and transverse logs of 18–20 cm diameter arranged at 1.5 m) | 1996 | Norway spruce |
Lp. | Trade Name (acc. to EN 13556:2003 [30]) | Density in Air-Dried State (kg/m3) | Class of Resistance of Heartwood to Fungi | Class of Resistance of Sapwood to Fungi | Class of Ease of Impregnation/Penetration * of Hardwood/Sapwood during Treatment |
---|---|---|---|---|---|
1 | grey alder | 500–530–550 | 5 | 5 | 1/1 |
2 | European pedunculate oak | 610–710–760 | 2 | 5 | 4/1 |
3 | Norway spruce | 440–460–470 | 4 | 5 | 3-4/3 v |
4 | Scots pine | 500–520–540 | 3-4 | 5 | 3-4/1 |
No. | Forest District and Mark | Species of Wood Used in the Road Construction | Graininess (mm) | Density (kg/m3) | Compression Strength (MPa) | Modulus of Elasticity (GPa) |
---|---|---|---|---|---|---|
1 | Stuposiany (SW) | Norway spruce | 3.9 (1.3) | 362 (97) | 40.8 (18.4) | 4.14 (2.51) |
2 | Lutowiska (LW) | grey alder | 3.8 (0.6) | 266 (107) | 19.3 (11.2) | 2.31 (1.50) |
3 | Koło–Rogóźno (KR1W) | Scots pine | 4.8 (1.4) | 413 (60) | 37.5 (6.4) | 3.48 (1.08) |
4 | Koło–Rogóźno (KR2W) | European pedunculate oak | 3.1 (0.7) | 685 (62) | 59.0 (8.1) | 6.69 (1.40) |
5 | Koło–Lipie Góry (KLG1W) | Scots pine | 2.3 (0.8) | 446 (45) | 53.5 (8.2) | 5.63 (0.99) |
6 | Koło–Lipie Góry (KLG2W) | Scots pine | 1.6 (0.9) | 424 (36) | 48.9 (5.4) | 5.03 (0.73) |
7 | Olsztyn (OGW) | Norway spruce | 4.7 (1.1) | 361 (23) | 47.3 (4.1) | 4.52 (0.71) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kozakiewicz, P.; Trzciński, G. Wood in the Construction of Forest Roads on Poor-bearing Road Subgrades. Forests 2020, 11, 138. https://doi.org/10.3390/f11020138
Kozakiewicz P, Trzciński G. Wood in the Construction of Forest Roads on Poor-bearing Road Subgrades. Forests. 2020; 11(2):138. https://doi.org/10.3390/f11020138
Chicago/Turabian StyleKozakiewicz, Paweł, and Grzegorz Trzciński. 2020. "Wood in the Construction of Forest Roads on Poor-bearing Road Subgrades" Forests 11, no. 2: 138. https://doi.org/10.3390/f11020138
APA StyleKozakiewicz, P., & Trzciński, G. (2020). Wood in the Construction of Forest Roads on Poor-bearing Road Subgrades. Forests, 11(2), 138. https://doi.org/10.3390/f11020138