Risk Assessment of Potential Food Chain Threats from Edible Wild Mushrooms Collected in Forest Ecosystems with Heavy Metal Pollution in Upper Silesia, Poland
Abstract
:1. Introduction
- (i)
- Determine the accumulation levels of selected heavy metals in forest mushrooms and assess the bioconcentration factor (BCF) in relation to soil and forest floor litter in forests under high pressure of industrial pollution, in the context of a risk assessment of the potential threats to the food chain and human health;
- (ii)
- Determine which mushroom species and families accumulate the highest levels of heavy metals, under the studied conditions;
- (iii)
- Describe the relationships between heavy metal contents in the mushroom tissues and the distance from the source of pollution;
- (iv)
- Determine the possible impacts of high contents of Cd and Zn on the uptake of macroelements by the studied mushrooms.
2. Material and Methods
2.1. Study Area and Material
2.2. Laboratory Analyses
2.3. Statistical Analysis
3. Results
3.1. Soil Properties
3.2. Micro- and Macroelement Contents in Forest Mushrooms
3.3. Concentrations of Heavy Metals in Families and Species of Forest Mushrooms
3.4. Heavy Metal Contents in Forest Mushrooms and Distance from the Main Emitter
4. Discussion
4.1. Heavy Metal Accumulation in Forest Mushrooms
4.2. Mushrooms as Bioindicators of Contamination
4.3. Metal Accumulation Rates
4.4. Food-Chain and Human-Health Assessment of Potential Risks
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kalač, P.; Svoboda, L. Review of trace element concentrations in edible mushrooms. Food Chem. 2000, 69, 273–281. [Google Scholar] [CrossRef]
- Zheng, X.; Suwandi, J.; Fuller, J.; Doromla, A.; Ng, K. Antioxidant capacity and mineral contents of edible wild Australian mushrooms. Food Sci. Technol. Int. 2012, 18, 367–379. [Google Scholar] [CrossRef] [PubMed]
- Kalač, P. A review of chemical composition and nutritional value of wildgrowing and cultivated mushrooms. J. Sci. Food Agric. 2013, 93, 209–218. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, J.; Wu, L.; Zhao, Y.; Li, T.; Li, J.; Wang, Y.; Liu, H. A mini-review of chemical composition and nutritional value of edible wild-grown mushroom from China. Food Chem. 2014, 151, 279–285. [Google Scholar] [CrossRef]
- Falandysz, J.; Borovička, J. Macro and trace mineral constituents and radionuclides in mushrooms-health benefits and risks. Appl. Microbiol. Biotechnol. 2013, 97, 477–501. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.S.; Chen, H.X.; Zhu, W.C.; Wang, Z.S. Effect of different drying methods on physicochemical properties and antioxidant activities of polysaccharides extracted from mushroom Inonotus obliquus. Food Res. Int. 2013, 50, 633–640. [Google Scholar] [CrossRef]
- Vamanu, E.; Nita, S. Antioxidant capacity and the correlation with major phenolic compounds, anthocyanin, and tocopherol content in various extracts from the wild edible Boletus edulis mushroom. BioMed Res. Int. 2013, 2013, 313905. [Google Scholar] [CrossRef] [Green Version]
- Türkmen, M.; Budur, D. Heavy metal contaminations in edible wild mushroom species from Turkey’s Black Sea region. Food Chem. 2018, 254, 256–259. [Google Scholar] [CrossRef]
- Kokkoris, V.; Massas, J.; Polemis, E.; Koutrotsios, G.; Zervakis, G.I. Accumulation of heavy metals by wild edible mushrooms with respect to soil substrates in the Athens metropolitan area (Greece). Sci. Total Environ. 2019, 85, 280–296. [Google Scholar] [CrossRef]
- Kalač, P.; Nižnanská, M.; Bevilaqua, D.; Stašková, I. Concentrations of mercury, copper, cadmium and lead in fruiting bodies of edible mushrooms in the vicinity of a mercury smelter and a copper smelter. Sci. Total Environ. 1996, 177, 251–258. [Google Scholar] [CrossRef]
- Falandysz, J.; Kunito, T.; Kubota, R.; Bielawski, L.; Mazur, A.; Falandysz, J.J.; Tanabe, S. Selected elements in Brown Birch Scaber Stalk Leccinum scabrum. J. Environ. Sci. Health 2007, 42, 2081–2088. [Google Scholar] [CrossRef] [PubMed]
- Falandysz, J.; Frankowska, A.; Jarzynska, G.; Dryzalowska, A.; Kojta, K.A.; Zhang, D. Survey on composition and bioconcentration potential of 12 metalic elements in King Bolete (Boletus edulis) mushroom that emerged at 11 spatially distant sites. J. Environ. Sci. Health 2011, 46, 231–246. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Huang, Q.; Cai, H.; Guo, X.; Wang, T.; Gui, M. Study of heavy metal concentrations in wild edible mushrooms in Yunnan Province, China. Food Chem. 2015, 188, 294–300. [Google Scholar] [CrossRef] [PubMed]
- Krzaklewski, W.; Pietrzykowski, M. Selected physico-chemical properties of zinc and lead ore tailings and their biological stabilisation. Water Air Soil Pollut. 2002, 141, 125–142. [Google Scholar] [CrossRef]
- Krzaklewski, W.; Barszcz, J.; Małek, S.; Kozioł, K.; Pietrzykowski, M. Contamination of forest soils in the vicinity of the sedimentation pond after zinc and lead ore flotation (in the region of Olkusz, southern Poland). Water Air soil Pollut. 2004, 159, 151–164. [Google Scholar] [CrossRef]
- Pietrzykowski, M.; Socha, J.; van Doorn, N.S. Linking heavy metal bioavailability (Cd, Cu, Zn and Pb) in Scots pine needles to soil properties in reclaimed mine areas. Sci. Total Environ. 2014, 470–471, 501–510. [Google Scholar] [CrossRef]
- Pająk, M.; Halecki, W.; Gąsiorek, M. Accumulative response of Scots pine (Pinus sylvestris L.) and silver birch (Betula pendula Roth) to heavy metals enhanced by Pb-Zn ore mining and processing plants: Explicitly spatial considerations of ordinary kriging based on a GIS approach. Chemosphere 2017, 168, 851–859. [Google Scholar] [CrossRef]
- Pająk, M.; Błońska, E.; Szostak, M.; Gąsiorek, M.; Pietrzykowski, M.; Urban, O.; Derbis, P. Restoration of vegetation in relation to soil properties of spoil heap heavily contaminated with heavy metals. Water Air Soil Pollut. 2018, 229, 392. [Google Scholar] [CrossRef] [Green Version]
- Ullrich, S.M.; Ramsey, M.H.; Helios-Rybicka, E. Total and exchangeable concentrations of heavy metals in soils near Bytom, an area of Pb/ Zn mining and smelting in Upper Silesia, Poland. Appl. Geochem. 1999, 14, 187–196. [Google Scholar] [CrossRef]
- Pająk, M.; Jasik, M. Heavy metal (Zn, Pb, Cd) concentration in soil and moss (Pleurozium schreberii) in the Brynica district, southern Poland. iFor.-Biogeosci. For. 2011, 4, 176–180. [Google Scholar] [CrossRef]
- Pająk, M.; Jasik, M. Zawartość cynku, kadmu i ołowiu w owocach borówki czarnej (Vaccinium myrtillus L.) rosnącej w lasach Nadleśnictwa Świerklaniec. Sylwan 2012, 156, 233–240. (In Polish) [Google Scholar]
- Chrastný, V.; Vaněk, A.; Teper, L.; Cabala, J.; Procházka, J.; Pechar, L.; Drahota, P.; Penížek, V.; Komárek, M.; Novák, M. Geochemical position of Pb, Zn and Cd in soils near the Olkusz mine/smelter, South Poland: Effects of land use, type of contamination and distance from pollution source. Environ. Monit. Assess. 2012, 184, 2517–2536. [Google Scholar] [CrossRef] [PubMed]
- Gruszecka, A.M.; Wdowin, M. Characteristics and distribution of analyzed metals in soil profiles in the vicinity of a postflotation waste site in the Bukowno region, Poland. Environ. Monit. Assess. 2013, 185, 8157–8168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciarkowska, K.; Sołek-Podwika, K.; Wieczorek, J. Enzyme activity as an indicator of soil-rehabilitation processes at a zinc and lead ore mining and processing area. J. Environ. Manag. 2014, 132, 250–256. [Google Scholar] [CrossRef] [PubMed]
- Pająk, M.; Cygan, A.; Bilański, P.; Kołodziej, Z. Growth and development of the Scots pine (Pinus sylvestris L.) in forest environments strongly polluted with heavy metals. J. Environ. Prot. Ecol. 2015, 16, 620–629. [Google Scholar]
- Pająk, M.; Błońska, E.; Frąc, M.; Oszust, K. Functional Diversity and Microbial Activity of Forest Soils that Are Heavily Contaminated by Lead and Zinc. Water Air Soil Pollut. 2016, 227, 348. [Google Scholar] [CrossRef] [Green Version]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2006, First Update 2007; World Soil Resources Reports No. 103; Technical Report for FAO: Rome, Italy, 2007. [Google Scholar]
- Forest Management Plan 2003–2012. Olkusz Forest District (Paper Version in Polish). Available online: https://www.krnap.cz/pl/plan-urzadzenia-lasu-pul-/ (accessed on 23 November 2020).
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 9. [Google Scholar]
- Rangel, T.F.; Diniz-Filho, J.A.F.; Bini, L.M. SAM: A comprehensive application for Spatial Analysis in Macroecology. Ecography 2010, 33, 46–50. [Google Scholar] [CrossRef]
- Širić, I.; Humar, M.; Kasap, A.; Kos, I.; Mioč, B.; Pohleven, F. Heavy metal bioaccumulation by wild edible saprophytic and ectomycorrhizal mushrooms. Environ. Sci. Pollut. Res. 2016, 23, 18239–18252. [Google Scholar] [CrossRef]
- Mackay, D.; Celsie, A.K.; Powell, D.E.; Parnis, J.M. Bioconcentration, bioaccumulation, biomagnification and trophic magnification: A modelling perspective. Environ. Sci. Process. Impacts 2018, 20, 72–85. [Google Scholar] [CrossRef] [Green Version]
- Shahabivand, S.; Tayebnia, V.; Aliloo, A.A. Impact of endophyte fungus Serendipita indica on fungus-assisted phyto-stabilization and performance of Carthamus tinctorius in a lead polluted soil. J. Plant Res. 2019, 31, 812–824. [Google Scholar]
- Lepš, J.; Šmilauer, P. Multivariate Analysis of Ecological Data Using CANOCO, 2nd ed.; Cambridge University Press: New York, NY, USA, 2014. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Liu, H.; Zhang, J.; Li, T.; Wang, Y. Evaluation of heavy metal concentrations of edible wild-grown mushrooms from China. J. Environ. Sci. Health 2017, 52, 178–183. [Google Scholar] [CrossRef] [PubMed]
- Szynkowska, M.I.; Pawlaczyk, A.; Albinska, J.; Paryjczak, T. Comparison of accumulation ability of toxicologically important metals in caps and stalks in chosen mushrooms. Pol. J. Chem. 2008, 82, 313–319. [Google Scholar]
- Sarikurkcu, C.; Copur, M.; Yildiz, D.; Akata, I. Metal concentration of wild edible mushrooms in Soguksu National Park in Turkey. Food Chem. 2011, 128, 731–734. [Google Scholar] [CrossRef]
- Chen, X.H.; Zhou, H.B.; Qiu, G.Z. Analysis of several heavy metals in wild edible mushrooms from regions of China. Bull. Environ. Contam. Toxicol. 2009, 83, 280–285. [Google Scholar] [CrossRef]
- Radulescu, C.; Stihi, C.; Busuioc, G.; Gheboianu, A.I.; Popescu, I.V. Studies concerning heavy metals bioaccumulation of wild edible mushrooms from industrial area by using spectrometric techniques. Bull. Environ. Contam. Toxicol. 2010, 84, 641–646. [Google Scholar] [CrossRef]
- Poursaeid, N.; Azadbakht, A.; Balali, G.R. Improvement of zinc bioaccumulation and biomass yield in the mycelia and fruiting bodies of Pleurotus florida cultured on liquid media. Appl. Biochem. Biotechnol. 2015, 175, 3387–3396. [Google Scholar] [CrossRef]
- Kojta, A.K.; Gucia, M.; Jarzynska, G.; Lewandowska, M.; Zakrzewska, A.; Falandysz, J.; Zhang, D. Phosphorus and certain metals in parasol mushrooms (Macrolepiota procera) and soils from the Augustowska forest and Ełk region in north-eastern Poland. Fresenius Environ. Bull. 2011, 20, 3044–3052. [Google Scholar]
- Kuziemska, B.; Wysokiński, A.; Jaremko, D.; Popek, M.; Kożuchowska, M. The content of some heavy metals in edible mushrooms. Ecol. Eng. 2018, 19, 66–70. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.; Rushworth, A.; Sahu, S.K. A Bayesian localized conditional autoregressive model for estimating the health effects of air pollution. Biometrics 2014, 70, 419–429. [Google Scholar] [CrossRef] [Green Version]
- Campos, J.A.; Tereja, N.A. Elements bioaccumulation in Sporocarps of fungi collected from quartzite acidic soils. Biol. Trace Elem. Res. 2011, 143, 540–554. [Google Scholar] [CrossRef] [PubMed]
- Alonso, J.; Garcia, M.A.; Perez-Lopez, M.; Melgar, M.J. The concentrations and bioconcentration factors of copper and zinc in edible mushrooms. Archives Environ. Contam. Toxicol. 2003, 44, 180–188. [Google Scholar] [CrossRef] [PubMed]
- Garcia, M.A.; Alonso, J.; Melgar, M.J. Lead in edible mushrooms. Levels and bioconcentration factors. J. Hazard. Mater. 2009, 167, 777–783. [Google Scholar] [CrossRef] [PubMed]
- Brzostowski, A.; Falandysz, J.; Jarzyńska, G.; Zhang, D. Bioconcentration potential of metallic elements by Poison Pax (Paxillus involutus) mushroom. J. Environ. Sci. Health 2011, 46, 378–393. [Google Scholar] [CrossRef]
- Jarzyńska, G.; Gucia, M.; Kojta, A.K.; Rezulak, K.; Falandysz, J. Profile of trace elements in Parasol Mushroom (Macrolepiota procera) from Tucholskie Forest. J. Environ. Sci. Health 2011, 46, 741–751. [Google Scholar] [CrossRef]
- Damodaran, D.; Shetty, K.V.; Balakrishnan, M.R. Interaction of Heavy Metals in Multimetal Biosorption by Galerina vittiformis from Soil. Bioremediation J. 2015, 1, 56–68. [Google Scholar] [CrossRef]
- Aloupi, M.; Koutrotsios, G.; Koulousaris, M.; Kalogeropoulos, N. Trace metal contents in wild edible mushrooms growing on serpentine and vulcanic soils on the island of Levos, Greece. Ecotoxicol. Environ. Saf. 2012, 78, 184–194. [Google Scholar] [CrossRef]
- Gucia, M.; Jarzyńska, G.; Rafał, E.; Roszak, M.; Kojta, A.K.; Osiej, I.; Falandysz, J. Multivariate analysis of mineral constituents of edible Parasol Mushroom (Macrolepiota procera) and soils beneath fruiting bodies collected from Northern Poland. Environ. Sci. Pollut. Res. 2011, 19, 416–431. [Google Scholar] [CrossRef] [Green Version]
- Lipka, K.; Falandysz, J. Accumulation of metallic elements by Amanita muscaria from rural lowland and industrial upland regions. J. Environ. Sci. Health 2017, 52, 184–190. [Google Scholar] [CrossRef]
- Zhu, F.; Qu, L.; Fan, W.; Qiao, M.; Hao, H.; Wang, X. Assessment of heavy metals in some wild edible mushrooms collected from Yunnan Province, China. Environ. Monit. Assess. 2011, 79, 191–199. [Google Scholar] [CrossRef]
- Scragg, A. Environmental Biotechnology, 2nd ed.; Oxford University Press: Oxford, UK, 2006. [Google Scholar]
- Sun, L.; Chang, W.; Bao, C.; Zhuang, Y. Metal Contents, Bioaccumulation, and Health Risk Assessment in Wild Edible Boletaceae Mushrooms. J. Food Sci. 2017, 82, 1500–1508. [Google Scholar] [CrossRef] [PubMed]
- JECFA/73/SC. Joint 2010. FAO/WHO Expert Committee on Food Additives. In Proceedings of the Seventy-third Meeting, Geneva, Switzerland, 8–17 June 2010; Available online: http://www.fao.org/ag/agn/agns/jecfa_index_en.asp (accessed on 23 November 2020).
- Fang, Y.; Sun, X.; Yang, W.; Ma, N.; Xin, Z.; Fu, J.; Liu, X.; Liu, M.; Mariga, A.M.; Zhu, X.; et al. Concentrations and health risks of lead, cadmium, arsenic, and mercury in rice and edible mushrooms in China. Food Chem. 2014, 147, 147–151. [Google Scholar] [CrossRef] [PubMed]
- EU 2008. Commission Regulation (EC) No 629/2008 of 2 July 2008 amending Regulation (EC) No 1881/2006 Setting Maximum Levels for Certain Contaminants in Foodstuffs, Official Journal of the European Union. (372008L173/6–9). Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32008R0629 (accessed on 23 November 2020).
- Chudzyński, K.; Falandysz, J. Multivariate analysis of elements content of Larch Bolete (Suillus grevillei) mushroom. Chemosphere 2008, 73, 1230–1239. [Google Scholar] [CrossRef] [PubMed]
- Palazzolo, E.; Letizia Gargano, M.; Venturella, G. The nutritional composition of selected wild edible mushrooms from Sicily (southern Italy). Int. J. Food Sci. Nutr. 2012, 63, 79–83. [Google Scholar] [CrossRef]
- Regulation of the Polish Minister of Health (January 13th, 2003) about the Maximum Levels of Chemical and Biological Contaminants That May be Present in Food, Food Ingredients, Permitted Additives, Processing Aids or on the Surface of Food (Dz.U. 2003, Position 326) (in Polish). Available online: http://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20030370326 (accessed on 23 November 2020).
Mean | SD | Min | Max | |
---|---|---|---|---|
pH (H2O) | 3.9 | 0.3 | 3.6 | 4.8 |
Heavy metals (mg·kg−1) | Soils (0–20 cm) | |||
Zn | 117 | 126 | 11 | 525 |
Pb | 177 | 176 | 32 | 709 |
Cd | 2.9 | 2.6 | 0.4 | 11.5 |
Heavy metals (mg·kg−1) | Litter | |||
Zn | 532 | 466 | 138 | 2542 |
Pb | 527 | 415 | 152 | 2108 |
Cd | 15.2 | 16.9 | 3.3 | 83.0 |
Mushroom (N) | Plots Numbers | |
---|---|---|
2013 | 2014 | |
Imleria badia (Fr.) Fr. (24) | 3; 4; 5; 8; 9; 11; 14; 23; 25; 29 | 4; 5; 6; 8; 9; 11; 13; 14; 15; 20; 21; 25; 28; 29 |
Suillus luteus (L.) Roussel (6) | 6; 8; 9; 13; 22; 23; 28; 29 | 6; 8; 9; 13; 22; 23; 28; 29 |
Suillus grevillei (Klotzsch) Singer (4) | 8; 10; 11; 19; 25; 28 | 8; 10; 11; 19; 25; 28 |
Suillus bovinus (L.) Roussel (4) | 10; 13; 15; 26 | 10; 13; 15; 26 |
Lactarius deliciosus (L.) Pers. (4) | 3; 5; 25 | 3; 5; 25 |
Lactarius helvus (Fr.) Fr. (18) | 15; 17; 28 | 15; 17; 28 |
Russula paludosa Britzelm. (6) | 3; 15 | 3; 15 |
Russula claroflava Grove (4) | 11; 17 | 11; 17 |
Russula aeruginea Lindblad ex Fr. (8) | 19; 28 | 19; 28 |
Russula sardonia Fr. ss. Melz. et. Zv (12) | 8; 10; 11; 19; 25; 28 | 8; 10; 11; 19; 25; 28 |
Element/Mushroom (N) | Cd | Cr | Cu | Ni | Pb | Zn |
---|---|---|---|---|---|---|
(mg·kg−1) | ||||||
Imleria badia (24) | 27.0 ± 17.3 | 7.0 ± 11.0 | 36.5 ± 24.6 | 2.2 ± 1.6 | 12.0 ± 24.3 | 187.4 ± 71.6 |
(7.8–84.3) | (1.3–57.0) | (2.8–90.6) | (0.5–6.5) | (1.3–102.0) | (100.4–404.0) | |
Suillus luteus (6) | 12.3 ± 7.6 | 5.0 ± 1.1 | 20.4 ± 19.9 | 2.1 ± 0.9 | 4.9 ± 1.0 | 146.9 ± 43.7 |
(6.5–20.8) | (3.9–6.1) | (0.9–39.7) | (1.1–2.9) | (3.8–5.6) | (96.6–175.6) | |
Suillus grevillei (4) | 4.1 ± 2.0 | 3.1 ± 1.1 | 2.3 ± 3.3 | 0.7 ± 0.3 | 4.5 ± 1.5 | 94.1 ± 9.6 |
(2.7–5.5) | (2.3–3.8) | (0.9–4.7) | (0.5–0.9) | (3.5–5.6) | (87.3–100.8) | |
Suillus bovinus (4) | 4.3 ± 0.8 | 2.7 ± 0.1 | 0.2 ± 0.0 | 1.5 ± 0.4 | 4.2 ± 2.2 | 79.2 ± 8.0 |
(3.8–4.9) | (2.6–2.8) | (0.1–0.3) | (1.2–1.8) | (2.7–5.7) | (73.6–84.8) | |
Lactarius deliciosus (4) | 3.6 ± 3.3 | 2.6 ± 0.3 | 17.7 ± 25.0 | 1.0 ± 0.6 | 6.4 ± 2.6 | 124.2 ± 38.3 |
(1.2–5.9) | (2.3–2.8) | (0.2–35.1) | (0.5–1.4) | (4.6–8.3) | (97.1–151.8) | |
Lactarius helvus (18) | 11.5 ± 12.5 | 4.4 ± 2.6 | 24.8 ± 27.8 | 1.6 ± 0.8 | 6.7 ± 3.9 | 147.4 ± 48.8 |
(1.4–40.9) | (2.6–9.9) | (0.2–76.3) | (0.8–2.9) | (3.0–13.8) | (81.3–219.1) | |
Russula paludosa (6) | 14.4 ± 2.7 | 3.5 ± 1.4 | 48.1 ± 7.0 | 1.7 ± 1.2 | 14.0 ± 1.5 | 129.5 ± 25.9 |
(12.7–17.5) | (1.9–4.8) | (40.3–53.8) | (0.9–3.1) | (12.8–15.6) | (110.1–158.8) | |
Russula claroflava (4) | 11.1 ± 8.9 | 10.2 ± 6.3 | 36.8 ± 9.3 | 2.2 ± 0.2 | 10.5 ± 4.5 | 302.7 ± 128.1 |
(4.8–17.4) | (5.8–14.7) | (30.3–43.4) | (2.0–2.4) | (7.4–13.7) | (212.2–393.3) | |
Russula aeruginea (8) | 9.3 ± 2.7 | 3.5 ± 0.6 | 10.8 ± 15.9 | 1.9 ± 0.8 | 9.7 ± 3.5 | 451.1 ± 145.3 |
(7.0–12.7) | (2.8–4.3) | (0.3–33.5) | (1.0–2.8) | (6.4–13.8) | (251.3–599.6) | |
Russula sardonia (12) | 13.8 ± 9.7 | 3.5 ± 2.0 | 35.8 ± 22.7 | 1.2 ± 0.5 | 7.8 ± 6.9 | 115.5 ± 48.1 |
(4.7–36.1) | (1.4–8.2) | (11.1–72.6) | (0.4–2.1) | (1.4–23.8) | (56.7–208.0) |
Element/Mushroom (N) | N | C | S | Ca | K | P | Mg | Na |
---|---|---|---|---|---|---|---|---|
(g·kg−1) | ||||||||
Imleria badia (24) | 59.6 ± 0.7 | 436.8 ± 0.9 | 5.3 ± 0.1 | 0.6 ± 0.0 | 38.2 ± 0.5 | 4.5 ± 0.1 | 0.7 ± 0.0 | 1.0 ± 0.1 |
(47.6−70.6) | (421.8−448.6) | (4.0−7.4) | (0.2−1.5) | (29.4−49.9) | (2.8−7.0) | (0.5−1.0) | (0.3−3.3) | |
Suillus luteus (6) | 58.8 ± 1.1 | 435.1 ± 1.0 | 4.4 ± 0.2 | 1.0 ± 0.1 | 35.7 ± 1.0 | 7.0 ± 0.1 | 0.9 ± 0.0 | 0.9 ± 0.1 |
(49.4−71.3) | (424.3−444.5) | (2.6−5.6) | (0.2−1.5) | (24.9−43.1) | (6.1−7.7) | (0.8−0.9) | (0.2−1.3) | |
Suillus grevillei (4) | 43.3 ± 0.3 | 439.9 ± 0.6 | 2.3 ± 0.0 | 0.5 ± 0.0 | 24.2 ± 0.3 | 5.9 ± 0.1 | 0.7 ± 0.0 | 0.7 ± 0.0 |
(40.9−45.7) | (435.7−444.1) | (2.0−2.5) | (0.4−0.6) | (22.2−26.2) | (5.5−6.4) | (0.7−0.8) | (0.5−0.8) | |
Suillus bovinus (4) | 43.6 ± 0.3 | 446.9 ± 1.8 | 2.6 ± 0.0 | 0.3 ± 0.0 | 23.8 ± 0.3 | 5.3 ± 0.1 | 0.7 ± 0.0 | 0.9 ± 0.0 |
(41.6−45.6) | (434.4−459.5) | (2.4−2.8) | (0.2−0.4) | (21.8−25.8) | (5.0−5.7) | (0.7−0.8) | (0.7−1.1) | |
Lactarius deliciosus (4) | 48.2 ± 0.2 | 443.8 ± 1.2 | 2.2 ± 0.0 | 0.5 ± 0.0 | 38.8 ± 1.0 | 5.8 ± 0.1 | 0.8 ± 0.0 | 0.2 ± 0.0 |
(47.2−49.3) | (435.5−452.1) | (2.1−2.3) | (0.3−0.7) | (31.4−46.1) | (5.0−6.7) | (0.7−0.9) | (0.2−0.3) | |
Lactarius helvus (18) | 50.8 ± 0.3 | 433.8 ± 2.4 | 2.5 ± 0.0 | 0.4 ± 0.0 | 37.4 ± 1.3 | 6.6 ± 0.2 | 0.9 ± 0.0 | 0.3 ± 0.0 |
(41.0−58.6) | (373.9−447.4) | (2.1−3.3) | (0.1−1.6) | (24.1−58.5) | (4.2−9.1) | (0.5−1.4) | (0.1−0.9) | |
Russula paludosa (6) | 44.0 ± 0.3 | 423.1 ± 1.3 | 2.2 ± 0.0 | 0.3 ± 0.0 | 40.4 ± 0.6 | 5.5 ± 0.1 | 0.8 ± 0.0 | 0.3 ± 0.0 |
(40.6−46.2) | (409.1−433.3) | (1.8−2.6) | (0.3−0.4) | (36.5−47.0) | (4.9−5.9) | (0.7−0.9) | (0.2−0.4) | |
Russula claroflava (4) | 57.9 ± 0.2 | 407.0 ± 2.0 | 3.5 ± 0.1 | 0.5 ± 0.0 | 52.3 ± 1.4 | 6.5 ± 0.1 | 1.0 ± 0.0 | 0.4 ± 0.0 |
(56.6−59.2) | (393.2−420.8) | (2.6−4.5) | (0.4−0.5) | (42.2−62.4) | (5.5−7.5) | (0.7−1.3) | (0.2−0.6) | |
Russula aeruginea (8) | 45.1 ± 1.1 | 423.0 ± 1.2 | 2.6 ± 0.0 | 0.4 ± 0.0 | 35.4 ± 0.8 | 4.3 ± 0.1 | 0.6 ± 0.0 | 0.6 ± 0.0 |
(35.8−57.5) | (406.7−432.6) | (2.3−3.2) | (0.3−0.5) | (26.2−46.3) | (3.2−6.4) | (0.4−0.8) | (0.4−0.8) | |
Russula sardonia (12) | 46.2 ± 0.1 | 433.9 ± 1.4 | 2.4 ± 0.1 | 0.3 ± 0.0 | 37.8 ± 0.8 | 5.1 ± 0.1 | 0.7 ± 0.0 | 0.4 ± 0.0 |
(36.4−62.7) | (405.9−455.2) | (1.7−3.5) | (0.2−0.6) | (30.8−54.0) | (3.4−7.5) | (0.5−1.0) | (0.1−0.9) |
Variable | OLS Coefficient | CAR Coefficient Standard | Standard Error | t | p-Value |
---|---|---|---|---|---|
Constant | 8.94 | 8.37 | 4.48 | 1.87 | 0.08 |
Cd | −0.04 | −0.04 | 0.05 | −0.68 | <0.05 |
Cr | 0.18 | 0.13 | 0.08 | 1.64 | 0.12 |
Cu | 0.05 | 0.04 | 0.02 | 1.95 | 0.07 |
Ni | −1.52 | −1.03 | 0.67 | −1.54 | 0.14 |
Pb | 0.071 | 0.05 | 0.034 | 1.58 | p < 0.01 |
Zn | 0.0013 | 0.0014 | 0.004 | −0.02 | p < 0.05 |
Species | BCF | |||||
---|---|---|---|---|---|---|
Soil | Litter | |||||
Zn | Cd | Pb | Zn | Cd | Pb | |
Imleria badia | 1.61 | 9.18 | 0.07 | 0.35 | 1.77 | 0.02 |
Suillus luteus | 1.26 | 4.18 | 0.03 | 0.27 | 0.81 | 0.01 |
Suillus grevillei | 0.81 | 1.39 | 0.01 | 0.81 | 0.27 | 0.01 |
Suillus bovinus | 0.68 | 1.48 | 0.02 | 0.15 | 0.29 | 0.01 |
Lactarius deliciosus | 0.99 | 1.21 | 0.04 | 0.21 | 0.23 | 0.01 |
Lactarius helvus | 1.27 | 3.90 | 0.04 | 0.27 | 0.75 | 0.01 |
Russula paludosa | 1.11 | 4.89 | 0.08 | 0.24 | 0.94 | 0.03 |
Russula claroflava | 2.60 | 3.78 | 0.06 | 0.56 | 0.73 | 0.02 |
Russula aeruginea | 4.45 | 3.43 | 0.05 | 0.96 | 0.66 | 0.02 |
Russula sardonia | 0.99 | 4.68 | 0.04 | 0.22 | 0.90 | 0.01 |
Macroelement | Axis 1 | Axis 2 | Axis 3 | Axis 4 | Axis 5 | Axis 6 |
---|---|---|---|---|---|---|
Zn | ||||||
TOC | −0.17 | −0.34 | 0.25 | −0.17 | 0.22 | −0.03 |
N | 0.38 | 0.43 | 0.17 | 0.27 | 0.01 | −0.03 |
P | −0.59 | 0.41 | −0.19 | −0.10 | −0.14 | 0.15 |
S | 0.89 | −0.51 | 0.14 | 0.04 | 0.02 | −0.14 |
Ca | −0.52 | −0.81 | −0.35 | 0.13 | 0.06 | −0.07 |
Mg | 0.60 | −0.65 | −0.18 | 0.18 | −0.20 | 0.20 |
K | −0.60 | 0.45 | −0.01 | −0.19 | 0.19 | 0.10 |
Na | −0.54 | −0.32 | −0.14 | 0.002 | 0.09 | −0.17 |
Cd | ||||||
TOC | 0.14 | −0.76 | 0.19 | −0.26 | 0.35 | −0.03 |
N | 0.71 | 0.26 | −0.15 | −0.00 | −0.05 | 0.21 |
P | −0.11 | 0.69 | −0.09 | −0.02 | −0.02 | 0.03 |
S | 0.48 | −0.78 | −0.08 | −0.11 | 0.12 | 0.01 |
Ca | −0.20 | 0.24 | −0.07 | −0.06 | −0.23 | −0.13 |
Mg | 0.11 | −0.72 | 0.20 | −0.25 | 0.28 | 0.008 |
K | −0.13 | −0.61 | 0.21 | −0.34 | 0.34 | −0.05 |
Na | −0.40 | 0.55 | −0.43 | −0.14 | −0.14 | −0.16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pająk, M.; Gąsiorek, M.; Jasik, M.; Halecki, W.; Otremba, K.; Pietrzykowski, M. Risk Assessment of Potential Food Chain Threats from Edible Wild Mushrooms Collected in Forest Ecosystems with Heavy Metal Pollution in Upper Silesia, Poland. Forests 2020, 11, 1240. https://doi.org/10.3390/f11121240
Pająk M, Gąsiorek M, Jasik M, Halecki W, Otremba K, Pietrzykowski M. Risk Assessment of Potential Food Chain Threats from Edible Wild Mushrooms Collected in Forest Ecosystems with Heavy Metal Pollution in Upper Silesia, Poland. Forests. 2020; 11(12):1240. https://doi.org/10.3390/f11121240
Chicago/Turabian StylePająk, Marek, Michał Gąsiorek, Michał Jasik, Wiktor Halecki, Krzysztof Otremba, and Marcin Pietrzykowski. 2020. "Risk Assessment of Potential Food Chain Threats from Edible Wild Mushrooms Collected in Forest Ecosystems with Heavy Metal Pollution in Upper Silesia, Poland" Forests 11, no. 12: 1240. https://doi.org/10.3390/f11121240
APA StylePająk, M., Gąsiorek, M., Jasik, M., Halecki, W., Otremba, K., & Pietrzykowski, M. (2020). Risk Assessment of Potential Food Chain Threats from Edible Wild Mushrooms Collected in Forest Ecosystems with Heavy Metal Pollution in Upper Silesia, Poland. Forests, 11(12), 1240. https://doi.org/10.3390/f11121240