A Multi-Layer Model for Transpiration of Urban Trees Considering Vertical Structure
Abstract
1. Introduction
2. Materials and Methods
2.1. Research Framework
2.2. Model Description
2.2.1. Input Data
2.2.2. Model Processing
Photosynthetically Active Radiation (PAR)
Leaf Boundary Layer Resistance
Aerodynamic Resistance
Stomatal Resistance
Leaf Surface Temperature
2.3. Scenario Simulation
2.3.1. Tree Location
2.3.2. Building Height
2.3.3. LAD Distribution
2.3.4. Other Input Data/Parameters
3. Results
3.1. PAR and Leaf Surface Temperature
3.2. Temporal Variation of Transpiration
3.3. Scenario Simulations
4. Discussion
4.1. Variation of Transpiration Across Different Scenarios
4.2. Strategies for Urban Heat Island
4.3. Model Limitations and Future Development
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Classes | Description | Default | Units/(Type) |
---|---|---|---|
Geometric data | Street orientation | 0–360 | Radian |
Computational parameters | Index of rays | - | - |
Number of rays | 10,000 | - | |
Index of ray steps | - | - | |
Number of ray steps | - | - | |
Ray step size (view factor) | 1 | m | |
Ray step size (direct shortwave radiation) | 0.1 | m | |
Radiative parameters | Albedo of walls | 0.4 | - |
Albedo of roofs | 0.15 | - | |
Albedo of sidewalks | 0.2 | - | |
Albedo of roads | 0.1 | - | |
Albedo of trees | 0.18 | - | |
Emissivity of walls | 0.9 | - | |
Emissivity of roofs | 0.9 | - | |
Emissivity of sidewalks | 0.95 | - | |
Emissivity of roads | 0.95 | - | |
Emissivity of trees | 0.96 | - |
References
- O’Loughlin, J.; Witmer, F.D.W.; Linke, A.M.; Laing, A.; Gettelman, A.; Dudhia, J. Climate variability and conflict risk in East Africa, 1990–2009. Proc. Natl. Acad. Sci. USA 2012, 109, 18344–18349. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, P.; Krueger, O.; Schlünzen, K.H. A statistical model for the urban heat island and its application to a climate change scenario. Int. J. Climatol. 2012, 32, 1238–1248. [Google Scholar] [CrossRef]
- Parker, D.E. Urban heat island effects on estimates of observed climate change. Wiley Interdiscip. Rev. Clim. Chang. 2010, 1, 123–133. [Google Scholar] [CrossRef]
- Radhi, H.; Fikry, F.; Sharples, S. Impacts of urbanisation on the thermal behaviour of new built up environments: A scoping study of the urban heat island in Bahrain. Landsc. Urban Plan. 2013, 113, 47–61. [Google Scholar] [CrossRef]
- Armson, D.; Stringer, P.; Ennos, A.R. The effect of tree shade and grass on surface and globe temperatures in an urban area. Urban For. Urban Green. 2012, 11, 245–255. [Google Scholar] [CrossRef]
- Block, A.H.; Livesley, S.J.; Williams, N.S.G. Responding to the Urban Heat Island: A Review of the Potential of Green Infrastructure. Vic. Cent. Clim. Chang. Adapt. 2012, 1–62. Available online: https://scholar.google.com/scholar_lookup?hl=en&publication_year=2012&author=A+Hunter-Blockauthor=SJ+Livesleyauthor=NSG.+Williams&title=Responding+to+the+urban+heat+island%3A+a+review+of+the+potential+of+green+infrastructure (accessed on 16 July 2020).
- Gunawardena, K.R.; Wells, M.J.; Kershaw, T. Utilising green and bluespace to mitigate urban heat island intensity. Sci. Total Environ. 2017, 584–585, 1040–1055. [Google Scholar] [CrossRef] [PubMed]
- Konarska, J.; Uddling, J.; Holmer, B.; Lutz, M.; Lindberg, F.; Pleijel, H.; Thorsson, S. Transpiration of urban trees and its cooling effect in a high latitude city. Int. J. Biometeorol. 2016, 60, 159–172. [Google Scholar] [CrossRef] [PubMed]
- Konarska, J.; Lindberg, F.; Larsson, A.; Thorsson, S.; Holmer, B. Transmissivity of solar radiation through crowns of single urban trees-application for outdoor thermal comfort modelling. Theor. Appl. Climatol. 2014, 117, 363–376. [Google Scholar] [CrossRef]
- Tan, Z.; Lau, K.K.L.; Ng, E. Urban tree design approaches for mitigating daytime urban heat island effects in a high-density urban environment. Energy Build. 2016, 114, 265–274. [Google Scholar] [CrossRef]
- Wang, Y.; Akbari, H. The effects of street tree planting on Urban Heat Island mitigation in Montreal. Sustain. Cities Soc. 2016, 27, 122–128. [Google Scholar] [CrossRef]
- Mirzaei, P.A.; Haghighat, F. Approaches to study Urban Heat Island-Abilities and limitations. Build. Environ. 2010, 45, 2192–2201. [Google Scholar] [CrossRef]
- Rahman, M.A.; Moser, A.; Gold, A.; Rötzer, T.; Pauleit, S. Vertical air temperature gradients under the shade of two contrasting urban tree species during different types of summer days. Sci. Total Environ. 2018, 633, 100–111. [Google Scholar] [CrossRef]
- Akbari, H. Shade trees reduce building energy use and CO2 emissions from power plants. Environ. Pollut. 2002, 116, 119–126. [Google Scholar] [CrossRef]
- Lin, B.S.; Lin, Y.J. Cooling effect of shade trees with different characteristics in a subtropical urban park. HortScience 2010, 45, 83–86. [Google Scholar] [CrossRef]
- Taha, H. Urban climates and heat islands: Albedo, evapotranspiration, and anthropogenic heat. Energy Build. 1997, 25, 99–103. [Google Scholar] [CrossRef]
- Dai, Y.; Dickinson, R.E.; Wang, Y.-P. A two-big-leaf model for canopy temperature, photosynthesis, and stomatal conductance. J. Clim. 2004, 17, 2281–2299. [Google Scholar] [CrossRef]
- Kim, G.; Coseo, P. Urban park systems to support sustainability: The role of urban park systems in hot arid urban climates. Forests 2018, 9, 439. [Google Scholar] [CrossRef]
- Monteith, J.L. Solar Radiation and Productivity in Tropical Ecosystems. J. Appl. Ecol. 1972, 9, 747. [Google Scholar] [CrossRef]
- McMahon, T.A.; Peel, M.C.; Lowe, L.; Srikanthan, R.; McVicar, T.R. Estimating actual, potential, reference crop and pan evaporation using standard meteorological data: A pragmatic synthesis. Hydrol. Earth Syst. Sci. 2013, 17, 1331–1363. [Google Scholar] [CrossRef]
- Nobel, P.S. Photosynthetic Rates of Sun versus Shade Leaves of Hyptis emoryi Torr. Plant Physiol. 1976, 58, 218–223. [Google Scholar] [CrossRef] [PubMed]
- Pons, T.L.; Jordi, W.; Kuiper, D. Acclimation of plants to light gradients in leaf canopies: Evidence for a possible role for cytokinins transported in the transpiration stream. J. Exp. Bot. 2001, 52, 1563–1574. [Google Scholar] [CrossRef] [PubMed]
- Saudreau, M.; Ezanic, A.; Adam, B.; Caillon, R.; Walser, P.; Pincebourde, S. Temperature heterogeneity over leaf surfaces: The contribution of the lamina microtopography. Plant Cell Environ. 2017, 40, 2174–2188. [Google Scholar] [CrossRef] [PubMed]
- Sinclair, T.R.; Murphy, C.E.; Knoerr, K.R. Development and Evaluation of Simplified Models for Simulating Canopy Photosynthesis and Transpiration. Br. Ecol. Soc. 1976, 13, 813–829. [Google Scholar] [CrossRef]
- Wang, Y.P.; Leuning, R. A two-leaf model for canopy conductance, photosynthesis and partitioning of available energy I: Model description and comparison with a multi-layered model. Agric. For. Meteorol. 1998, 91, 89–111. [Google Scholar] [CrossRef]
- Baldocchi, D.D.; Wilson, K.B.; Gu, L. How the environment, canopy structure and canopy physiological functioning influence carbon, water and energy fluxes of a temperate broad-leaved deciduous forest—An assessment with the biophysical model CANOAK. Tree Physiol. 2002, 22, 1065–1077. [Google Scholar] [CrossRef]
- Leuning, R. A critical appraisal of a combined stomatal-photosynthesis model for C3 plants. Plant. Cell Environ. 1995, 18, 339–355. [Google Scholar] [CrossRef]
- Pyles, R.D.; Weare, B.C.; Pawu, K.T. The UCD advanced canopy- atmosphere-soil algorithm: Comparisons with observations from different climate and vegetation regimes. Q. J. R. Meteorol. Soc. 2000, 126, 2951–2980. [Google Scholar] [CrossRef]
- Wang, Z.H.; Bou-Zeid, E.; Smith, J.A. A coupled energy transport and hydrological model for urban canopies evaluated using a wireless sensor network. Q. J. R. Meteorol. Soc. 2013, 139, 1643–1657. [Google Scholar] [CrossRef]
- Park, C.Y.; Lee, D.K.; Krayenhoff, E.S.; Heo, H.K.; Ahn, S.; Asawa, T.; Murakami, A.; Kim, H.G. A multilayer mean radiant temperature model for pedestrians in a street canyon with trees. Build. Environ. 2018, 141, 298–309. [Google Scholar] [CrossRef]
- Ryu, Y.H.; Bou-Zeid, E.; Wang, Z.H.; Smith, J.A. Realistic Representation of Trees in an Urban Canopy Model. Bound. -Layer Meteorol. 2016, 159, 193–220. [Google Scholar] [CrossRef]
- Ward, H.C.; Kotthaus, S.; Järvi, L.; Grimmond, C.S.B. Surface Urban Energy and Water Balance Scheme (SUEWS): Development and evaluation at two UK sites. Urban Clim. 2016, 18, 1–32. [Google Scholar] [CrossRef]
- Nice, K.A.; Coutts, A.M.; Tapper, N.J. Development of the VTUF-3D v1.0 urban micro-climate model to support assessment of urban vegetation influences on human thermal comfort. Urban Clim. 2018, 24, 1052–1076. [Google Scholar] [CrossRef]
- Bonan, G.B.; Williams, M.; Fisher, R.A.; Oleson, K.W. Modeling stomatal conductance in the earth system: Linking leaf water-use efficiency and water transport along the soil-plant-atmosphere continuum. Geosci. Model Dev. 2014, 7, 2193–2222. [Google Scholar] [CrossRef]
- Meili, N.; Manoli, G.; Burlando, P.; Bou-Zeid, E.; Chow, W.T.L.; Coutts, A.M.; Daly, E.; Nice, K.A.; Roth, M.; Tapper, N.J.; et al. An urban ecohydrological model to quantify the effect of vegetation on urban climate and hydrology (UT&C v1.0). Geosci. Model Dev. 2020, 13, 335–362. [Google Scholar] [CrossRef]
- Sinoquet, H.; Le Roux, X.; Adam, B.; Ameglio, T.; Daudet, F.A. RATP: A model for simulating the spatial distribution of radiation absorption, transpiration and photosynthesis within canopies: Application to an isolated tree crown. Plant Cell Environ. 2001, 24, 395–406. [Google Scholar] [CrossRef]
- Fatichi, S. The Modeling of Hydrological Cycle and Its Interaction with Vegetation in the Framework of Climate Change. Ph.D. Thesis, University Firenze, Florence, Italy, 2010. [Google Scholar]
- Buck, A.L. New equations for computing vapour pressure and enhancement factor. J. Appl. Meteorol. 1981, 20, 1527–1532. [Google Scholar] [CrossRef]
- Buck, A.L. Humidity conversion equations. In Model CR-1A Hygrom. with Autofill, Oper. Man; Vaisala: Helsinki, Finland, 2012; pp. 20–21. [Google Scholar]
- Sager, J.C.; Farlane, J.C.M. Chapter 1. Radiation. Growth Chamb. Handb. 2003, 46, 30–33. [Google Scholar]
- Larcher, W. Physiological Plant Ecology: Ecophysiology and Stress Physiology of Functional Groups, 3rd ed.; Springer: Berlin, Germany; New York, NY, USA, 1995. [Google Scholar]
- Ginter, T.L. Shade Adaptive Responses of Plants. Ph.D. Thesis, Texas Tech U Diversity, Lubbock, TX, USA, 2001. [Google Scholar]
- Smolander, S.; Stenberg, P. A method for estimating light interception by a conifer shoot. Tree Physiol. 2001, 21, 797–803. [Google Scholar] [CrossRef][Green Version]
- He, M.; Kimball, J.S.; Maneta, M.P.; Maxwell, B.D.; Moreno, A.; Beguería, S.; Wu, X. Regional crop gross primary productivity and yield estimation using fused landsat-MODIS data. Remote Sens. 2018, 10, 372. [Google Scholar] [CrossRef]
- Jones, H. Plants and Microclimate; Cambridge University Press: Cambridge, UK, 1983. [Google Scholar]
- Choudhury, B.J.; Monteith, J.L. A four-layer model for the heat budget of homogeneous land surfaces. Q. J. R. Meteorol. Soc. 1988, 114, 373–398. [Google Scholar] [CrossRef]
- Shuttleworth, W.J.; Gurney, R.J. The theoretical relationship between foliage temperature and canopy resistance in sparse crops. Q. J. R. Meteorol. Soc. 1990, 116, 497–519. [Google Scholar] [CrossRef]
- Masson, V. A physically-based scheme for the urban energy budget in atmospheric models. Bound. -Layer Meteorol. 2000, 94, 357–397. [Google Scholar] [CrossRef]
- Mahat, V.; Tarboton, D.G.; Molotch, N.P. Testing above- and below-canopy representations of turbulent fluxes in an energy balance snowmelt model. Water Resour. Res. 2013, 49, 1107–1122. [Google Scholar] [CrossRef]
- Wright, J.L. Evaluating Turbulent Transfer Aerodynamically within the Microclimate of a Cornfield; Cornell University: Ithaca, NY, USA, 1965. [Google Scholar]
- Macdonald, R.W.; Griffiths, R.F.; Hall, D.J. An improved method for the estimation of surface roughness of obstacle arrays. Atmos. Environ. 1998, 32, 1857–1864. [Google Scholar] [CrossRef]
- Kent, C.W.; Grimmond, S.; Gatey, D. Aerodynamic roughness parameters in cities: Inclusion of vegetation. J. Wind Eng. Ind. Aerodyn. 2017, 169, 168–176. [Google Scholar] [CrossRef]
- Guan, D.; Zhang, Y.; Zhu, T. A wind-tunnel study of windbreak drag. Agric. For. Meteorol. 2003, 118, 75–84. [Google Scholar] [CrossRef]
- Guan, D.; Zhu, T.; Han, S. Wind tunnel experiment of drag of isolated tree models in surface boundary layer. J. For. Res. 2000, 11, 156–160. [Google Scholar] [CrossRef]
- Collatz, G.J.; Ball, J.T.; Grivet, C.; Berry, J.A. Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: A model that includes a laminar boundary layer. Agric. For. Meteorol. 1991, 54, 107–136. [Google Scholar] [CrossRef]
- Wong, S.C.; Cowan, I.R.; Farquhar, G.D. Stomatal conductance correlates with photosynthetic capacity. Nature 1979, 282, 424–426. [Google Scholar] [CrossRef]
- Ball, J.T.; Woodrow, I.E.; Berry, J.A. A Model Predicting Stomatal Conductance and its Contribution to the Control of Photosynthesis under Different Environmental Conditions. In Progress in Photosynthesis Research: Volume 4 Proceedings of the VIIth International Congress on Photosynthesis, Providence, RI, USA, 10–15 August 1986; Biggins, J., Ed.; Springer: Dordrecht, The Netherlands, 1987; pp. 221–224. ISBN 978-94-017-0519-6. [Google Scholar]
- Baldocchi, D.; Meyers, T. On using eco-physiological, micrometeorological and biogeochemical theory to evaluate carbon dioxide, water vapor and trace gas fluxes over vegetation: A perspective. Agric. For. Meteorol. 1998, 90, 1–25. [Google Scholar] [CrossRef]
- Harley, P.C.; Thomas, R.B.; Reynolds, J.F.; Strain, B.R. Modelling photosynthesis of cotton grown in elevated CO2. Plant. Cell Environ. 1992, 15, 271–282. [Google Scholar] [CrossRef]
- Farquhar, G.D.; von Caemmerer, S.; Berry, J.A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 1980, 149, 78–90. [Google Scholar] [CrossRef]
- Jordan, D.B.; Ogren, W.L. The CO2/O2 specificity of ribulose 1,5-bisphosphate carboxylase/oxygenase-Dependence on ribulosebisphosphate concentration, pH and temperature. Planta 1984, 161, 308–313. [Google Scholar] [CrossRef]
- Hetherington, A.M.; Woodward, F.L. The role of stomata in sensing and driving environmental change. Nature 2003, 424, 528–539. [Google Scholar] [CrossRef]
- Prentice, I.C.; Dong, N.; Gleason, S.M.; Maire, V.; Wright, I.J. Balancing the costs of carbon gain and water transport: Testing a new theoretical framework for plant functional ecology. Ecol. Lett. 2014, 17, 82–91. [Google Scholar] [CrossRef]
- Johnson, I.R.; Thornley, J.H.M. Temperature Dependence of Plant and Crop Process. Ann. Bot. 1985, 55, 1–24. [Google Scholar] [CrossRef]
- Harley, P.C.; Tenhunen, J.D. Modeling the Photosynthetic Response of C3 Leaves to Environmental Factors. Model. Crop Photosynth. Biochem. Canopy 1991, 19, 17–39. [Google Scholar] [CrossRef]
- Johnson, F.; Eyring, H.; Williams, R. The nature of enzyme inhibitions in bacterial luminescence: Sulfanilamide, urethane, temperature and pressure. Jotirnal Cell Cotnparative Physiol. 1942, 20, 247–268. [Google Scholar] [CrossRef]
- Field, C. Allocating leaf nitrogen for the maximization of carbon gain: Leaf age as a control on the allocation program. Oecologia 1983, 56, 341–347. [Google Scholar] [CrossRef]
- Evans, J.R. Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 1989, 78, 9–19. [Google Scholar] [CrossRef]
- Leuning, R.; Wang, Y.P.; Cromer, R.N. Model simulations of spatial distributions and daily totals of photosynthesis in Eucalyptus grandis canopies. Oecologia 1991, 88, 494–503. [Google Scholar] [CrossRef]
- Le Roux, X.; Grand, S.; Dreyer, E.; Daudet, F.A. Parameterization and testing of a biochemically based photosynthesis model for walnut (Juglans regia) trees and seedlings. Tree Physiol. 1999, 19, 481–492. [Google Scholar] [CrossRef]
- Le Roux, X.; Sinoquet, H.; Vandame, M. Spatial distribution of leaf dry weight per area and leaf nitrogen concentration in relation to local radiation regime within an isolated tree crown. Tree Physiol. 1999, 19, 181–188. [Google Scholar] [CrossRef]
- Sellers, P.J.; Randall, D.A.; Collatz, G.J.; Berry, J.A.; Field, C.B.; Dazlich, D.A.; Zhang, C.; Collelo, G.D.; Bounoua, L. A revised land surface parameterization (SiB2) for atmospheric GCMs. Part I: Model formulation. J. Clim. 1996, 9, 676–705. [Google Scholar] [CrossRef]
- Kumar, A. Medicinal Plants, 1st ed.; International Scientific Publishing Academy: New Delhi, India, 2010. [Google Scholar]
- Loescher, H.W.; Hanson, C.V.; Ocheltree, T.W. The psychrometric constant is not constant: A novel approach to enhance the accuracy and precision of latent energy fluxes through automated water vapor calibrations. J. Hydrometeorol. 2009, 10, 1271–1284. [Google Scholar] [CrossRef]
- Campbell, G.S.; Norman, J.M. An Introduction to Environmental Biophysics; Springer: Berlin, Germany, 1998; p. 286. [Google Scholar] [CrossRef]
- Loughner, C.P.; Allen, D.J.; Zhang, D.L.; Pickering, K.E.; Dickerson, R.R.; Landry, L. Roles of urban tree canopy and buildings in urban heat island effects: Parameterization and preliminary results. J. Appl. Meteorol. Climatol. 2012, 51, 1775–1793. [Google Scholar] [CrossRef]
- Bakarman, M.A.; Chang, J.D. The Influence of Height/width Ratio on Urban Heat Island in Hot-arid Climates. Procedia Eng. 2015, 118, 101–108. [Google Scholar] [CrossRef]
- Park, C.; Jeong, S.; Park, H.; Yun, J.; Liu, J. Evaluation of the Potential Use of Satellite-Derived XCO2 in Detecting CO2 Enhancement in Megacities with Limited Ground Observations: A Case Study in Seoul Using Orbiting Carbon Observatory-2. Asia-Pac. J. Atmos. Sci. 2020. [Google Scholar] [CrossRef]
- Moriwaki, R.; Kanda, M. Vertical profiles of carbon dioxide, temperature, and water vapor within and above a suburban canopy layer in winter. In Proceedings of the Sixth Symposium on the Urban Environment, Atlanta, GA, USA, 27 January–3 February 2006. [Google Scholar]
- Vogt, R.; Christen, A.; Rotach, M.W.; Roth, M.; Satyanarayana, A.N.V. Temporal dynamics of CO2 fluxes and profiles over a Central European city. Theor. Appl. Climatol. 2006, 84, 117–126. [Google Scholar] [CrossRef]
- Sheppard, J.; Morhart, C.; Spiecker, H. Bark surface temperature measurements on the boles of wild cherry (Prunus avium) grown within an agroforestry system. Silva Fenn. 2016, 50. [Google Scholar] [CrossRef]
- Ali-Toudert, F.; Mayer, H. Numerical study on the effects of aspect ratio and orientation of an urban street canyon on outdoor thermal comfort in hot and dry climate. Build. Environ. 2006, 41, 94–108. [Google Scholar] [CrossRef]
- Perini, K.; Magliocco, A. Effects of vegetation, urban density, building height, and atmospheric conditions on local temperatures and thermal comfort. Urban For. Urban Green. 2014, 13, 495–506. [Google Scholar] [CrossRef]
- Mcpherson, E.G.; Dougherty, E. Selecting Trees for Shade in the Southwest. J. Arboric. 1989, 15, 35–43. [Google Scholar]
- McPherson, E.G. Cooling Urban Heat Islands with Sustainable Landscapes. In Platt; Rutherford, H., Rowntree, R.A., Muick, P.C., Eds.; University of Massachusetts Press: Amherst, MA, USA, 1994; pp. 151–171. [Google Scholar]
Input Data | Parameter | Units |
---|---|---|
Air temperature | ||
Wind speed | ||
Relative humidity | RH | |
Air pressure | ||
Cloud cover | CF | |
Leaf area index | ||
Leaf area density | ||
Canopy height | ||
Leaf width |
Parameter | Value | Unit | Source |
---|---|---|---|
0.75 | [73] | ||
9.5 | [31] | ||
0.081 | [59] | ||
0.46 | [71] | ||
0.141 | [71] | ||
0.22 | [31] | ||
47.42 | [70] | ||
1.118 | [70] | ||
36.11 | [70] | ||
0.993 | [70] | ||
−32.85 | [70] | ||
−1.027 | [70] | ||
35.79 | [59] | ||
9.59 | [59] | ||
−3.9489 | [59] | ||
80.47 | [59] | ||
14.51 | [59] | ||
−28.99 | [59] | ||
84.45 | [59] | ||
109.5 | [70] | ||
79.5 | [59] | ||
199.5 | [70] | ||
201 | [59] | ||
650 | [59] | ||
650 | [59] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yun, S.H.; Park, C.Y.; Kim, E.S.; Lee, D.K. A Multi-Layer Model for Transpiration of Urban Trees Considering Vertical Structure. Forests 2020, 11, 1164. https://doi.org/10.3390/f11111164
Yun SH, Park CY, Kim ES, Lee DK. A Multi-Layer Model for Transpiration of Urban Trees Considering Vertical Structure. Forests. 2020; 11(11):1164. https://doi.org/10.3390/f11111164
Chicago/Turabian StyleYun, Seok Hwan, Chae Yeon Park, Eun Sub Kim, and Dong Kun Lee. 2020. "A Multi-Layer Model for Transpiration of Urban Trees Considering Vertical Structure" Forests 11, no. 11: 1164. https://doi.org/10.3390/f11111164
APA StyleYun, S. H., Park, C. Y., Kim, E. S., & Lee, D. K. (2020). A Multi-Layer Model for Transpiration of Urban Trees Considering Vertical Structure. Forests, 11(11), 1164. https://doi.org/10.3390/f11111164