Nutrient Contribution of Litterfall in a Short Rotation Plantation of Pure or Mixed Plots of Populus alba L. and Robinia pseudoacacia L.
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Litterfall Collection
2.3. Foliar Nutrient Analysis
2.4. Data Analysis
3. Results and Discussion
3.1. Leaf Litter Supply
3.2. Foliar Nutrient Concentration and Retranslocation Rate in Green Leaves and Senescent Leaves
3.2.1. Macronutrients and C
3.2.2. Retranslocation
3.3. Temporal Variability of Nutrients in Senescent Leaves
3.4. Stoichiometric C:N Ratio in Senescent Leaves
3.5. Nutrient Supply to the Soil Derived from Leaf Litter
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- European Commision. Review of the 2012 European Bioeconomy Strategy; European Commision: Brussels, Belgium, 2018. [Google Scholar]
- Farmer, R.J. The genecology of Populus. In Biology of Populus and Its Implications for Management and Conservation; Stettler, R.F., Bradshaw, H.D., Jr., Heilman, P.H., Hinckley, T.M., Eds.; NRC Research Press, National Research Council of Canada: Ottawa, ON, Canada, 1996; pp. 33–55. [Google Scholar]
- FAO. The International Commission on Poplars and Other Fast-Growing Trees Sustaining People and the Environment (IPC): International register of cultivars of Populus L. 2016. Available online: http://www.fao.org/forestry/ipc/69637@204274/en/ (accessed on 23 September 2020).
- Aravanopoulos, F.A. Breeding of fast growing forest tree species for biomass production in Greece. Biomass Bioenergy 2010, 34, 1531–1537. [Google Scholar] [CrossRef]
- Oliveira, N.; Sixto, H.; Cañellas, I.; Rodríguez-Soalleiro, R.; Pérez-Cruzado, C. Productivity model and reference diagram for short rotation biomass crops of poplar grown in Mediterranean environments. Biomass Bioenergy 2015, 72, 309–320. [Google Scholar] [CrossRef]
- Straker, K.C.; Quinn, L.D.; Voigt, T.B.; Lee, D.K.; Kling, G.J. Black Locust as a bioenergy feedstock: A review. Bioenergy Res. 2015, 8, 1117–1135. [Google Scholar] [CrossRef]
- Quinkenstein, A.; Wöllecke, J.; Böhm, C.; Grünewald, H.; Freese, D.; Schneider, B.U.; Hüttl, R.F. Ecological benefits of the alley cropping agroforestry system in sensitive regions of Europe. Environ. Sci. Policy 2009, 12, 1112–1121. [Google Scholar] [CrossRef]
- Slazak, A.; Freese, D. Phosphorus sorption kinetics in reclaimed lignite mine soils under different age stands of Robinia pseudoacacia L. in northeast Germany. Appl. Environ. Soil Sci. 2015, 6, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Vítková, M.; Müllerová, J.; Sádlo, J.; Pergl, J.; Pyšek, P. Black locust (Robinia pseudoacacia) beloved and despised: A story of an invasive tree in Central Europe. For. Ecol. Manag. 2017, 384, 287–302. [Google Scholar] [CrossRef]
- Bergante, S.; Facciotto, G.; Minotta, G. Identification of the main site factors and management intensity affecting the establishment of Short-Rotation-Coppices (SRC) in Northern Italy through stepwise regression analysis. Cent. Eur. J. Biol. 2010, 5, 522–530. [Google Scholar] [CrossRef]
- Marron, N.; Priault, P.; Gana, C.; Gérant, D.; Epron, D. Prevalence of interspecific competition in a mixed poplar/black locust plantation under adverse climate conditions. Ann. For. Sci. 2018, 75, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, N.; del Río, M.; Forrester, D.I.; Rodríguez-Soalleiro, R.; Pérez-Cruzado, C.; Cañellas, I.; Sixto, H. Mixed short rotation plantations of Populus alba and Robinia pseudoacacia for biomass yield. For. Ecol. Manag. 2018, 410, 48–55. [Google Scholar] [CrossRef]
- Forrester, D.I.; Bauhus, J. A Review of Processes Behind Diversity—Productivity Relationships in Forests. Curr. For. Rep. 2016, 2, 45–61. [Google Scholar] [CrossRef] [Green Version]
- Facelli, J.M.; Pickett, S.T.A. Plant litter: Its dynamics and effects on plant community structure. Bot. Rev. 1991, 57, 1–32. [Google Scholar] [CrossRef]
- Maguire, D.A. Branch mortality and potential litterfall from Douglas-fir trees in stands of varying density. For. Ecol. Manag. 1994, 70, 41–53. [Google Scholar] [CrossRef]
- Chapin, F.S.; Matson, P.A.; Mooney, H.A. Principles of Terrestrial Ecosystem Ecology; Springer: New York, NY, USA, 2002; pp. 1–17. [Google Scholar]
- Aragão, L.E.O.C.; Malhi, Y.; Metcalfe, D.B.; Silva-Espejo, J.E.; Jiménez, E.; Navarrete, D.; Almeida, S.; Costa, A.C.L.; Salinas, N.; Phillips, O.L.; et al. Above—and below-ground net primary productivity across ten Amazonian forests on contrasting soils. Biogeosciences 2009, 6, 2759–2778. [Google Scholar] [CrossRef] [Green Version]
- El-Ramedy, H.R.; Alshaal, T.A.; Amer, M.; Domokos-Szabolcsy, E.; Elhawat, N.; Prokisch, J.; Fari, M. Soil Quality and Plant Nutrition. In Sustainable Agricultural Reviews 14; Springer: Cham, Switzerland, 2014; pp. 345–447. [Google Scholar] [CrossRef]
- Krishna, M.P.; Mohan, M. Litter decomposition in forest ecosystems: A review. Energy Ecol. Environ. 2017, 2, 236–249. [Google Scholar] [CrossRef]
- Giweta, M. Role of litter production and its decomposition, and factors affecting the processes in a tropical forest ecosystem: A review. J. Ecol. Environ. 2020, 44, 1–9. [Google Scholar] [CrossRef]
- Singh, K.P.; Tripathi, S.K. Litterfall, litter decomposition and nutrient release patterns in four native tree species raised on coal mine spoil at Singrauli, India. Biol. Fertil. Soils 1999, 29, 371–378. [Google Scholar] [CrossRef]
- Kumar, B.M. Litter dynamics in plantation and agroforestry systems of the tropics-a review of observations and methods. In Ecological Basis of Agroforestry; Batish, D.R., Kohli, R.K., Jose, S., Singh, H.P., Eds.; CRC Press: Boca Raton, FL, USA, 2008; pp. 181–209. [Google Scholar] [CrossRef]
- Eslamdoust, J.; Sohrabi, H. Carbon storage in biomass, litter, and soil of different native and introduced fast-growing tree plantations in the South Caspian Sea. J. For. Res. 2018, 29, 449–457. [Google Scholar] [CrossRef]
- De la Cruz, A.C. Dinámica de Nutrientes en Parcelas Experimentales de Populus x Euramericana (Dode) Guinier ‘I-214’. Ph.D. Thesis, Universidad Politécnica de Madrid, Madrid, Spain, 2005. Available online: http://oa.upm.es/328/ (accessed on 15 August 2020).
- Gruhn, P.; Goletti, F.; Yudelman, M. Integrated Nutrient Management, Soil Fertility, and Sustainable Agriculture: Current Issues and Future Challenges; Food Agriculture and Environment Discussion Paper IFRPI 2020 Vision Brief; International Food Policy Research Institute: Washington, DC, USA, 2000. [Google Scholar]
- Das, D.K.; Chaturvedi, O.P. Structure and function of Populus deltoides agroforestry systems in eastern India: 2. Nutrient dynamics. Agrofor. Syst. 2005, 65, 223–230. [Google Scholar] [CrossRef]
- Salehi, A.; Ghorbanzadeh, N.; Salehi, M. Soil nutrient status, nutrient return and retranslocation in poplar species and clones in northern Iran. IForest 2013, 6, 336–341. [Google Scholar] [CrossRef]
- Meiresonne, L.; De Schrijver, A.; De Vos, B. Nutrient cycling in a poplar plantation (Populus trichocarpa x Populus deltoides ‘Beaupré’) on former agricultural land in northern Belgium. Can. J. For. Res. 2007, 37, 141–155. [Google Scholar] [CrossRef]
- De Vries, W.; Vel, E.; Reinds, G.J.; Deelstra, H.; Klap, J.M.; Leeters, E.E.J.M.; Hendriks, C.M.A.; Kerkvoorden, M.; Landmann, G.; Herkendell, J.; et al. Intensive monitoring of forest ecosystems in Europe 1. Objectives, set-up and evaluation strategy. For. Ecol. Manag. 2003, 174, 77–95. [Google Scholar] [CrossRef]
- Stark, H.; Nothdurft, A.; Block, J.; Bauhus, J. Forest restoration with Betula ssp. and Populus ssp. nurse crops increases productivity and soil fertility. For. Ecol. Manag. 2015, 339, 57–70. [Google Scholar] [CrossRef]
- Berthelot, A.; Ranger, J.; Gelhaye, D. Nutrient uptake and immobilization in a short-rotation coppice stand of hybrid poplars in north-west France. For. Ecol. Manag. 2000, 128, 167–179. [Google Scholar] [CrossRef]
- Guo, L.B.; Sims, R.E.H.; Horne, D.J. Biomass production and nutrient cycling in Eucalyptus short rotation energy forests in New Zealand: II. Litter fall and nutrient return. Biomass Bioenerg 2006, 30, 393–404. [Google Scholar] [CrossRef]
- Prescott, C.E.; Vesterdal, L.; Pratt, J.; Venner, K.H.; De Montigny, L.M.; Trofymow, J.A. Nutrient concentrations and nitrogen mineralization in forest floors of single species conifer plantations in coastal British Columbia. Can. J. For. Res. 2000, 30, 1341–1352. [Google Scholar] [CrossRef]
- Rahajoe, J.S. The Role of Litter Production and Decomposition of Dominant Tree Species on the Nutrient Cycle in Natural Forest with Various Substrate Conditions. Ph.D. Thesis, Hokkaido University, Sapporo, Japan, 2003. [Google Scholar]
- Teklay, T. Decomposition and nutrient release from pruning residues of two indigenous agroforestry species during the wet and dry seasons. Nutr. Cycl. Agroecosyst. 2007, 77, 115–126. [Google Scholar] [CrossRef]
- Özbucak, T.B.; Kutbay, H.G.; Kilic, D.; Korkmaz, H.; Bilgin, A.; Yalçin, E.; Apaydin, Z. Foliar resorption of nutrients in selected sympatric tree species in gallery forest (black sea region). Pol. J. Ecol. 2008, 56, 227–237. [Google Scholar]
- Arevalo, C.B.M.; Bhatti, J.S.; Chang, S.X.; Sidders, D. Land use change effects on ecosystem carbon balance: From agricultural to hybrid poplar plantation. Agric. Ecosyst. Environ. 2011, 141, 342–349. [Google Scholar] [CrossRef]
- Brown, S.; Lugo, A.E.; Chapman, J. Biomass of tropical tree plantations and its implications for the global carbon budget. Can. J. For. Res. 1986, 16, 390–394. [Google Scholar] [CrossRef]
- Rytter, R.M. The potential of willow and poplar plantations as carbon sinks in Sweden. Biomass Bioenergy 2012, 36, 86–95. [Google Scholar] [CrossRef]
- Calfapietra, C.; Gielen, B.; Galema, A.N.J.; Lukac, M.; De Angelis, P.; Moscatelli, M.C.; Ceulemans, R.; Scarascia-Mugnozza, G. Free-air CO2 enrichment (FACE) enhances biomass production in a short-rotation poplar plantation. Tree Physiol. 2003, 23, 805–814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez-Cruzado, C.; Mohren, G.M.J.; Merino, A.; Rodríguez-Soalleiro, R. Carbon balance for different management practices for fast growing tree species planted on former pastureland in southern Europe: A case study using the CO2 Fix model. Eur. J. For. Res. 2012. [Google Scholar] [CrossRef] [Green Version]
- Barrette, M.; Leblanc, M.; Thiffault, N.; Paquette, A.; Lavoie, L.; Bélanger, L.; Bujold, F.; Côté, L.; Lamoureux, J.; Schneider, R.; et al. Issues and solutions for intensive plantation silviculture in a context of ecosystem management. For. Chron. 2014, 90, 732–747. [Google Scholar] [CrossRef]
- Thiffault, E.; Barrette, J.; Paré, D.; Titus, B.D.; Keys, K.; Morris, D.M.; Hope, G. Developing and validating indicators of site suitability for forest harvesting residue removal. Ecol. Indic. 2014, 43, 1–18. [Google Scholar] [CrossRef]
- Thiffault, N.; Elferjani, R.; Hébert, F.; Paré, D.; Gagné, P. Intensive mechanical site preparation to establish short rotation hybrid poplar plantations-A case-study in Quebec, Canada. Forests 2020, 11, 785. [Google Scholar] [CrossRef]
- Sixto, H.; Hernández-Garasa, M.J.; Ciria, P.; Carrasco, J.E.; Cañellas, I. Manual de Cultivo de Populus spp. para la Producción deBiomasa con Fines Energéticos; Ministerio de Ciencia e Innovación, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA): Madrid, Spain, 2010.
- Stettler, R.F.; Bradshaw, H.D., Jr.; Heilman, P.E.; Hinckley, T.M. Biology of Populus and Its Implications for Management and Conservation; Stettler, R.F., Bradshaw, H.D., Jr., Heilman, P.E., Hinckley, T.M., Eds.; NRC Research Press, National Research Council of Canada: Ottawa, ON, Canada, 1996.
- Huang, J.; Wang, X.; Yan, E. Leaf nutrient concentration, nutrient resorption and litter decomposition in an evergreen broad-leaved forest in eastern China. For. Ecol. Manag. 2007, 239, 150–158. [Google Scholar] [CrossRef]
- Vitousek, P.M. Litterfall, nutrient cycling, and nutrient limitation in tropical forests. Ecology 1984, 65, 285–298. [Google Scholar] [CrossRef]
- Medina-Villar, S.; Castro-Díez, P.; Alonso, A.; Cabra-Rivas, I.; Parker, I.M.; Pérez-Corona, E. Do the invasive trees, Ailanthus altissima and Robinia pseudoacacia, alter litterfall dynamics and soil properties of riparian ecosystems in Central Spain? Plant Soil 2015, 396, 311–324. [Google Scholar] [CrossRef]
- Hobbie, S.E. Plant species effects on nutrient cycling: Revisiting litter feedbacks. Trends Ecol. Evol. 2015, 30, 357–363. [Google Scholar] [CrossRef]
- González-Muñoz, N.; Castro-Díez, P.; Parker, I.M. Differences in nitrogen use strategies between native and exotic tree species: Predicting impacts on invaded ecosystems. Plant Soil 2013, 363, 319–329. [Google Scholar] [CrossRef]
- Castro-Díez, P.; Valle, G.; González-Muñoz, N.; Alonso, Á. Can the life-history strategy explain the success of the exotic trees Ailanthus altissima and Robinia pseudoacacia in Iberian floodplain forests? PLoS ONE 2014, 9, 30–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Navarro, C.M.; Pérez-Ramos, I.M.; Marañón, T.; Mediterráneo, U.B. Aporte de hojarasca al suelo en un bosque mediterraneo. Almoraima 2004, 31, 119–128. [Google Scholar]
- Oliveira, N.; Rodríguez-Soalleiro, R.; Pérez-Cruzado, C.; Cañellas, I.; Sixto, H.; Ceulemans, R. Above- and below-ground carbon accumulation and biomass allocation in poplar short rotation plantations under Mediterranean conditions. For. Ecol. Manag. 2018, 410, 48–55. [Google Scholar] [CrossRef]
- Sixto, H.; Gil, P.; Ciria, P.; Camps, F.; Sánchez, M.; Cañellas, I.; Voltas, J. Performance of hybrid poplar clones in short rotation coppice in Mediterranean environments: Analysis of genotypic stability. GCB Bioenergy 2014, 6, 661–671. [Google Scholar] [CrossRef]
- Guénon, R.; Bastien, J.C.; Thiébeau, P.; Bodineau, G.; Bertrand, I. Carbon and nutrient dynamics in short-rotation coppice of poplar and willow in a converted marginal land, a case study in central France. Nutr. Cycl. Agroecosyst. 2016, 106, 293–309. [Google Scholar] [CrossRef]
- Cotrufo, M.F.; De Angelis, P.; Polle, A. Leaf litter production and decomposition in a poplar short-rotation coppice exposed to free air CO2 enrichment (POPFACE). Glob. Chang. Biol. 2005, 11, 971–982. [Google Scholar] [CrossRef]
- Tateno, R.; Tokuchi, N.; Yamanaka, N.; Du, S.; Otsuki, K.; Shimamura, T.; Xue, Z.; Wang, S.; Hou, Q. Comparison of litterfall production and leaf litter decomposition between an exotic black locust plantation and an indigenous oak forest near Yan’an on the Loess Plateau, China. For. Ecol. Manag. 2007, 241, 84–90. [Google Scholar] [CrossRef]
- Aerts, R. Nitrogen Partitioning between Resorption and Decomposition Pathways: A Trade-Off between Nitrogen Use Efficiency and Litter Decomposibility? Oikos 1997, 80, 603–606. [Google Scholar] [CrossRef]
- Bonneau, M. Le diagnostic foliaire. Rev. For. Fr. 1988, 40, 19–28. [Google Scholar] [CrossRef]
- Koupar, S.A.M.; Hosseini, S.M.; Modirrahmati, A.; Tabari, M.; Golchin, A.; Rad, F.H. Effect of pure and mixed plantations of Populus deltoides with Alnus subcordata on growth, nutrition and soil properties: A case study of Foman Region, Iran. Asian J. Chem. 2011, 23, 5261–5265. [Google Scholar] [CrossRef]
- Lee, Y.C.; Nam, J.M.; Kim, J.G. The influence of black locust (Robinia pseudoacacia) flower and leaf fall on soil phosphate. Plant Soil 2011, 341, 269–277. [Google Scholar] [CrossRef] [Green Version]
- Harvey, H.P.; Van Den Driessche, R. Poplar nutrient resorption in fall or drought: Influence of nutrient status and clone. Can. J. For. Res. 1999, 29, 1916–1925. [Google Scholar] [CrossRef]
- Aerts, R.; Chapin, F.S. The Mineral Nutrition of Wild Plants Revisited: A Re-evaluation of Processes and Patterns. Adv. Ecol. Res. 1999, 30, 1–67. [Google Scholar] [CrossRef]
- Porta, J.; López-Acevedo, M.; Roquero, C. Edafología para la Agricultura y el Medio Ambiente; Prensa, M., Ed.; Mundi-Prensa: Madrid, Spain, 2006; ISBN 84-7114-468-9. [Google Scholar]
- Pritchett, W.L.; Fisher, R.F. Properties and Management of Forest Soils, 2nd ed.; John and Wiley and Sons: Hoboken, NJ, USA, 1987. [Google Scholar]
- Cao, Y.; Chen, Y. Coupling of plant and soil C:N:P stoichiometry in black locust (Robinia pseudoacacia) plantations on the Loess Plateau, China. Trees 2017, 31, 1559–1570. [Google Scholar] [CrossRef]
- Hyvärinen, A. Deposition on forest soils—Effect of tree canopy on throughfall. In Acidification in Finland; Springer: Berlin/Heidelberg, Germany, 1990; pp. 199–213. [Google Scholar]
- Yanai, R.D.; Arthur, M.A.; Acker, M.; Levine, C.R.; Park, B.B. Variation in mass and nutrient concentration of leaf litter across years and sites in a northern hardwood forest. Can. J. For. Res. 2012, 42, 1597–1610. [Google Scholar] [CrossRef]
- Laganière, J.; Paré, D.; Bradley, R.L. How does a tree species influence litter decomposition? Separating the relative contribution of litter quality, litter mixing, and forest floor conditions. Can. J. For. Res. 2010, 40, 465–475. [Google Scholar] [CrossRef]
- Côté, B.; Camiré, C. Tree growth and nutrient cycling in dense plantings of hybrid poplar and black alder. Can. J. For. Res. 1987, 17, 516–523. [Google Scholar] [CrossRef]
- McLennan, D.S. Spatial variation in black cottonwood (Populus trichocarpa) foliar nutrient concentrations at seven alluvial sites in coastal British Columbia. Can. J. For. Res. 1990, 20, 1089–1097. [Google Scholar] [CrossRef]
- Makeshin, F.; Rehfuess, K.F.; Ruesch, I. Short-rotation plantations of poplars and willows on formerly arable land-sites, nutritional-status, biomass production, and ecological effects. Forstwiss. Cent. 1989, 108, 125–143. [Google Scholar] [CrossRef]
- Rytter, L.; Ericsson, T. Leaf nutrient analysis in Salix viminalis (L.) energy forest stands growing on agricultural land. Z. Pflanzenernähr. Bodenkd. 1993, 156, 349–356. [Google Scholar] [CrossRef]
- Jug, A.; Hofmann-Schielle, C.; Makeschin, F.; Rehfuess, K.E. Short-rotation plantations of balsam poplars, aspen and willows on former arable land in the Federal Republic of Germany. II. Nutritional status and bioelement export by harvested shoot axes. For. Ecol. Manag. 1999, 121, 67–83. [Google Scholar] [CrossRef]
- Heinsdorf, D. Ergebnisse von Minersldungungsveruchen zu Androscoggin-Papplen auf Kippsanden ausgekohlter Braunkohlentagebaue im Bezirk Cottbus. Beitr. Forstwirtsch. 1985, 19, 34–40. [Google Scholar]
- Bergmann, W. Nutritional Disorders of Plants: Developments, Visual and Analytical Diagnosis; Gustav Fischer Verlag Jena: New York, NY, USA, 1992. [Google Scholar]
- Sardans, J.; Janssens, I.A.; Alonso, R.; Veresoglou, S.D.; Rillig, M.C.; Sanders, T.G.M.; Carnicer, J.; Filella, I.; Farré-Armengol, G.; Peñuelas, J. Foliar elemental composition of European forest tree species associated with evolutionary traits and present environmental and competitive conditions. Glob. Ecol. Biogeogr. 2015, 24, 240–255. [Google Scholar] [CrossRef] [Green Version]
- Malavolta, E. Avaliação do Estado Nutricional das Plantas: Princípios e Aplicações, 2nd ed.; Potafos: Piracicaba, Brazil, 1997. [Google Scholar]
- Sayyad, E.; Hosseini, S.M.; Mokhtari, J.; Mahdavi, R.; Jalali, S.G.; Akbarinia, M.; Tabari, M. Comparison of growth, nutrition and soil properties of pure and mixed stands of Populus deltoides and Alnus subcordata. Silva Fenn. 2006, 40, 27–35. [Google Scholar] [CrossRef] [Green Version]
- Tzvetkova, N.; Petkova, K. Bioaccumulation of heavy metals by the leaves of Robinia pseudoacacia as a bioindicator tree in industrial zones. J. Environ. Biol. 2015, 36, 59–63. [Google Scholar] [PubMed]
- Fernández-Pascual, M.; María, N.; Felipe, M. Fijación biológica del nitrógeno: Factores limitantes. In Proceedings of the Ciencia y Medio Ambiente—Segundas Jornadas Científicas sobre Medio Ambiente del CCMA-CSIC, Madrid, Spain, 16–17 April 2002; pp. 195–202. [Google Scholar]
- Dawson, J.O.; Gordon, J.C. Nitrogen Fixation in Relation to Photosynthesis in Alnus glutinosa. Bot. Gaz. 1979, 140, 70–75. Available online: www.jstor.org/stable/2474206 (accessed on 5 August 2020). [CrossRef]
- Martín-García, J.; Merino, A.; Diez, J.J. Relating visual crown conditions to nutritional status and site quality in monoclonal poplar plantations (Populus × euramericana). Eur. J. For. Res. 2012, 131, 1185–1198. [Google Scholar] [CrossRef]
- Elferjani, R.; DesRochers, A.; Tremblay, F. Effects of mixing clones on hybrid poplar productivity, photosynthesis and root development in northeastern Canadian plantations. For. Ecol. Manag. 2014, 327, 157–166. [Google Scholar] [CrossRef]
- Stefan, K.; Fürst, A.; Hacker, R.; Bartels, U. Forest Foliar Condition in Europe. Results of Large-Scale Foliar Chemistry Surveys (Survey 1995 and Data from Previous Years); European Commission—United Nations/Economic Commission for Europe: Brussels, Belgium, 1997. [Google Scholar]
- Kirkby, E.A.; Mengel, K. The role of magnesium in plant nutrition. Z. Pflanzenernähr. Bodenkd. 1976, 139, 209–222. [Google Scholar] [CrossRef]
- Gordon, W.S.; Jackson, R.B. Nutrient concentrations in fine roots. Ecology 2000, 81, 275–280. [Google Scholar] [CrossRef]
- Yuan, Z.Y.; Li, L.H.; Han, X.G.; Huang, J.H.; Jiang, G.M.; Wan, S.Q.; Zhang, W.H.; Chen, Q.S. Nitrogen resorption from senescing leaves in 28 plant species in a semi-arid region of northern China. J. Arid Environ. 2005, 63, 191–202. [Google Scholar] [CrossRef]
- Kobe, R.K.; Lepczyk, C.A.; Iyer, M. Resorption efficiency decreases with increasing green leaf nutrients in a global data set. Ecology 2005, 86, 2780–2792. [Google Scholar] [CrossRef]
- Andrades, M.; Martinez, E. Fertilidad del Suelo y Parámetros que la Definen, 3rd ed.; Universidad la Rioja-Servicio Publicaciones: La Rioja, Spain, 2014; ISBN 978-84-695-9286-1. [Google Scholar]
- Fife, D.N.; Nambiar, E.K.S.; Saur, E. Retranslocation of foliar nutrients in evergreen tree species planted in a Mediterranean environment. Tree Physiol. 2008, 28, 187–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Townsend, A.R.; Cleveland, C.C.; Asner, G.P.; Bustamante, M.M.C. Controls over foliar N:P ratios in tropical rain forests. Ecology 2007, 88, 107–118. [Google Scholar] [CrossRef]
- Niinemets, Ü.; Tamm, Ü. Species differences in timing of leaf fall and foliage chemistry modify nutrient resorption efficiency in deciduous temperate forest stands. Tree Physiol. 2005, 25, 1001–1014. [Google Scholar] [CrossRef] [Green Version]
- Hernández, M.C.P. Entradas Biológicas de Nitrógeno en un Bosque Ripario; Universidad Complutense de Madrid, Servicio de Publicaciones: Madrid, Spain, 1996. [Google Scholar]
- López, E.S.; Pardo, I.; Felpeto, N. Seasonal differences in green leaf breakdown and nutrient content of deciduous and evergreen tree species and grass in a granitic headwater stream. Hydrobiologia 2001, 464, 51–61. [Google Scholar] [CrossRef]
- Mendes, A.D.R.; de Oliveira, L.E.M.; do Nascimento, M.N.; Reis, K.L.; Bonome, L.T.D.S. Concentração e redistribuição de nutrientes minerais nos diferentes estádios foliares de seringueira. Acta Amaz. 2012, 42, 525–532. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.S.; Guo, J.F.; Chen, G.S.; Xie, J.S.; Cai, L.P.; Lin, P. Litterfall, nutrient return, and leaf-litter decomposition in four plantations compared with a natural forest in subtropical China. Ann. For. Sci. 2004, 61, 465–476. [Google Scholar] [CrossRef] [Green Version]
- Fang, S.; Li, H.; Xie, B. Decomposition and nutrient release of four potential mulching materials for poplar plantations on upland sites. Agrofor. Syst. 2008, 74, 27–35. [Google Scholar] [CrossRef]
- Li, L.J.; Zeng, D.H.; Yu, Z.Y.; Fan, Z.P.; Yang, D.; Liu, Y.X. Impact of litter quality and soil nutrient availability on leaf decomposition rate in a semi-arid grassland of Northeast China. J. Arid Environ. 2011, 75, 787–792. [Google Scholar] [CrossRef]
- Moro, M.J.; Domingo, F. Litter decomposition in four woody species in a Mediterranean climate: Weight loss, N and P dynamics. Ann. Bot. 2000, 86, 1065–1071. [Google Scholar] [CrossRef]
- Brady, N.C.; Weil, R.R. The Nature and Properties of Soils; Prentice Hall: Upper Sadle River, NJ, USA, 2008. [Google Scholar]
- Berg, B.; Staaf, H. Leaching, accumulation and release of nitrogen in decomposing forest litter. Ecol. Bull. 1981, 33, 163–178. [Google Scholar]
- Manzoni, S.; Jackson, R.B.; Trofymow, J.A.; Porporato, A. The global stoichiometry of litter nitrogen mineralization. Science 2008, 231, 684–686. [Google Scholar] [CrossRef]
- Hirschfeld, J.R.; Finn, J.T.; Patterson, W.A. Effects of Robinia pseudoacacia on leaf litter decomposition and nitrogen mineralization in a northern hardwood stand. Can. J. For. Res. 1984, 14, 201–205. [Google Scholar] [CrossRef]
- Gartner, T.B.; Cardon, Z.G. Decomposition dynamics in mixed-species leaf litter. Oikos 2004, 104, 230–246. [Google Scholar] [CrossRef]
- Perala, D.A.; Alban, D.H. Rates of Forest Floor Decomposition and Nutrient Turnover in Aspen, Pine, and Spruce Stands on Two Soils; Research Paper NC-227; North Central Forest Experiment Station, USDA Forest Service: Saint Paul, MN, USA, 1982.
Parameters | Before Plantation | |
---|---|---|
Texture | Sandy-loam | |
pH H2O | 8.65 ± 0.10 | |
EC | mS cm−1 | 0.59 ± 0.24 |
Carbonates | % | 10.08 ± 1.00 |
N | g kg−1 | 0.81 ± 0.08 |
OM | % | 0.68 ± 0.08 |
C:N | 23.77 ± 1.97 | |
P | mg kg−1 | <4 |
K | cmol kg−1 | 0.30 ± 0.05 |
Ca | cmol kg−1 | 38.71 ± 0.87 |
Mg | cmol kg−1 | 4.71 ± 0.44 |
Na | cmol kg−1 | 0.73 ± 0.30 |
Plots | Leaf Litterfall |
---|---|
(mg ha−1 yr−1) | |
P. alba monoculture | 3.37 ± 0.79 |
50PA:50RP mixture | 2.82 ± 0.37 |
R. pseudoacacia monoculture | 2.55 ± 0.16 |
Nutrient | Sampling Month | P. alba Monoculture | 50PA:50RP Mixture | R. pseudoacacia Monoculture | |
---|---|---|---|---|---|
N | g kg−1 | October | 12.87 ± 1.18 * | 14.63 ± 0.79 * | 14.57 ± 3.91 |
November | 8.45 ± 1.65 c ** | 11.64 ± 1.85 b *; ** | 14.86 ± 1.10 a | ||
December | 9.33 ± 1.00 b ** | 11.01 ± 2.09 b ** | 19.11 ± 0.75 a | ||
P | g kg−1 | October | 0.65 ± 0.20 | 0.56 ± 0.07 | 0.56 ± 0.19 |
November | 0.56 ± 0.01 a | 0.55 ± 0.06 a | 0.40 ± 0.07 b | ||
December | 0.45 ± 0.14 | 0.56 ± 0.06 | 0.45 ± 0.04 | ||
K | g kg−1 | October | 4.81 ± 1.42 | 6.37 ± 2.03 | 4.54 ± 1.76 |
November | 5.40 ± 0.40 | 5.59 ± 0.28 | 4.60 ± 1.01 | ||
December | 4.12 ± 2.11 | 4.40 ± 0.39 | 1.91 ± 0.28 | ||
Ca | g kg−1 | October | 32.75 ± 15.42 | 38.81 ± 0.89 * | 40.77 ± 10.04 |
November | 28.74 ± 0.64 | 32.16 ± 2.29 ** | 34.06 ± 10.92 | ||
December | 24.02 ± 8.87 | 29.73 ± 0.70 ** | 25.86 ± 5.93 | ||
Mg | g kg−1 | October | 4.82 ± 1.91 | 5.54 ± 0.91 | 5.15 ± 0.51 * |
November | 6.40 ± 0.13 a | 6.16 ± 0.30 a | 4.09 ± 1.27 b * | ||
December | 5.65 ± 1.92 a | 6.63 ± 0.64 a | 2.37 ± 0.17 b ** |
Sampling Month | P. alba Monoculture | 50PA:50RPMixture | R. pseudoacacia Monoculture | |
---|---|---|---|---|
C:N | October | 35.35 ± 3.73 | 31.17 ± 1.35 | 32.67 ± 7.57 |
November | 50.76 ± 3.47 | 40.46 ± 6.70 | 31.50 ± 1.74 | |
December | 49.33 ± 5.27 | 42.58 ± 7.71 | 25.69 ± 0.98 | |
Weighted mean | 47.20 ± 2.38 a | 38.83 ± 5.19 ab | 31.20 ± 4.36 b |
Plot | C | N | P | K | Ca | Mg |
---|---|---|---|---|---|---|
kg ha−1 yr−1 | ||||||
P. alba monoculture | 1507.39 ± 312.62 | 31.97 ± 6.46 | 1.71 ± 0.69 | 15.84 ± 9.12 | 90.29 ± 34.98 | 19.76 ± 8.07 |
50PA:50RP mixture | 1296.91 ± 174.66 | 33.62 ± 4.41 | 1.58 ± 0.23 | 14.58 ± 1.63 | 91.53 ± 10.13 | 17.62 ± 2.37 |
R. pseudoacacia monoculture | 1186.66 ± 63.74 | 38.56 ± 5.83 | 1.22 ± 0.27 | 9.66 ± 0.95 | 90.72 ± 26.38 | 10.97 ± 2.61 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
González, I.; Sixto, H.; Rodríguez-Soalleiro, R.; Oliveira, N. Nutrient Contribution of Litterfall in a Short Rotation Plantation of Pure or Mixed Plots of Populus alba L. and Robinia pseudoacacia L. Forests 2020, 11, 1133. https://doi.org/10.3390/f11111133
González I, Sixto H, Rodríguez-Soalleiro R, Oliveira N. Nutrient Contribution of Litterfall in a Short Rotation Plantation of Pure or Mixed Plots of Populus alba L. and Robinia pseudoacacia L. Forests. 2020; 11(11):1133. https://doi.org/10.3390/f11111133
Chicago/Turabian StyleGonzález, Isabel, Hortensia Sixto, Roque Rodríguez-Soalleiro, and Nerea Oliveira. 2020. "Nutrient Contribution of Litterfall in a Short Rotation Plantation of Pure or Mixed Plots of Populus alba L. and Robinia pseudoacacia L." Forests 11, no. 11: 1133. https://doi.org/10.3390/f11111133
APA StyleGonzález, I., Sixto, H., Rodríguez-Soalleiro, R., & Oliveira, N. (2020). Nutrient Contribution of Litterfall in a Short Rotation Plantation of Pure or Mixed Plots of Populus alba L. and Robinia pseudoacacia L. Forests, 11(11), 1133. https://doi.org/10.3390/f11111133