Non-Pessimistic Predictions of the Distributions and Suitability of Metasequoia glyptostroboides under Climate Change Using a Random Forest Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Species Records
2.2. Bioclimatic Variables
2.3. RF Model Building and Validation
2.4. Data Analyses of Key Bioclimatic Variables and Habitat Suitability
2.5. Identification of Glacial Refugia and Protected Areas
3. Results
3.1. Model Reliability and Key Bioclimatic Variables
3.2. Potential Distribution of M. glyptostroboides from the Past to the Future
3.2.1. Potential Distribution of M. glyptostroboides in the Current Climate Scenario
3.2.2. Potential Distribution of M. glyptostroboides in the Past
3.2.3. Potential Distribution of M. glyptostroboides in the Future
3.3. The Change in the Habitat Suitability of M. glyptostroboides
3.4. Speculation on Glacial Refugia
3.5. Identification of Priority Protected Areas and Key Protected Areas
4. Discussion
4.1. The Rationality of the Model and the Limitations of the Prediction
4.2. The Significance of the Glacial Refugia Hypothesis
4.3. Non-pessimistic Predictions of M. glyptostroboides under Climate Change Help Us Do More
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cammell, M.E.; Knight, J.D. Effects of climatic change on the population dynamics of crop pests. Adv. Ecol. Res. 1992, 22, 117–162. [Google Scholar]
- Rehnus, M.; Bollmann, K.; Schmatz, D.R.; Hackländer, K.; Braunisch, V. Alpine glacial relict species losing out to climate change: The case of the fragmented mountain hare population (Lepus timidus) in the Alps. Glob. Chang. Biol. 2018, 24, 3236–3253. [Google Scholar] [CrossRef] [PubMed]
- Vanderwal, J.; Murphy, H.T.; Kutt, A.S.; Perkins, G.C.; Bateman, B.L.; Perry, J.J.; Reside, A.E. Focus on poleward shifts in species’ distribution underestimates the fingerprint of climate change. Nat. Clim. Chang. 2013, 3, 239–243. [Google Scholar] [CrossRef]
- Allen, S.K.; Plattner, G.K.; Nauels, A.; Xia, Y.; Stocker, T.F. Climate change 2013: The physical science basis. An overview of the working group 1 contribution to the fifth assessment report of the Intergovernmental Panel on Climate Change (IPCC). Comp. Geom. 2007, 18, 95–123. [Google Scholar]
- Yun, J.H.; Nakao, K.; Tsuyama, I.; Matsui, T.; Park, C.H.; Lee, B.Y.; Tanake, N. Vulnerability of subalpine fir species to climate change: Using species distribution modeling to assess the future efficiency of current protected areas in the Korean Peninsula. Ecol. Res. 2018, 33, 341–350. [Google Scholar] [CrossRef]
- Booth, T.H.; Nix, H.A.; Busby, J.R.; Hutchinson, M.F. Bioclim: The first species distribution modelling package, its early applications and relevance to most current maxent studies. Divers. Distrib. 2014, 20, 1–9. [Google Scholar] [CrossRef]
- Austin, M. Species distribution models and ecological theory: A critical assessment and some possible new approaches. Ecol. Model. 2017, 200, 1–19. [Google Scholar] [CrossRef]
- Oppel, S.; Meirinho, A.; Ramirez, I.; Gardner, B.; O’Connell, A.F.; Miller, P.I.; Louzao, M. Comparison of five modelling techniques to predict the spatial distribution and abundance of seabirds. Biol. Conserv. 2012, 156, 94–104. [Google Scholar] [CrossRef] [Green Version]
- Lentini, P.E.; Wintle, B.A. Spatial conservation priorities are highly sensitive to choice of biodiversity surrogates and species distribution model type. Ecography 2015, 38, 1101–1111. [Google Scholar] [CrossRef]
- Chapman, D.S.; Scalone, R.; Štefanić, E.; Bullock, J.M. Mechanistic species distribution modeling reveals a niche shift during invasion. Ecology 2017, 98, 1671–1680. [Google Scholar] [CrossRef] [Green Version]
- Moore, J.K.; Fu, W.; Primeau, F.; Britten, G.L.; Lindsay, K.; Long, M.; Doney, S.C.; Mahowald, N.; Hoffman, F.; Randerson, J.T. Sustained climate warming drives declining marine biological productivity. Science 2018, 359, 1139–1143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.H.; Koralewski, T.E.; Mcgrew, E.K.; Grant, W.E.; Byram, T.D. Species distribution model for management of an invasive vine in forestlands of eastern Texas. Forests 2015, 6, 4374–4390. [Google Scholar] [CrossRef] [Green Version]
- Podani, J.; Ódor, P.; Fattorini, S.; Strona, G.; Heino, J.; Schmera, D. Exploring multiple presence-absence data structures in ecology. Ecol. Model. 2018, 383, 41–51. [Google Scholar] [CrossRef] [Green Version]
- Chunrong, M.; Falk, H.; Yumin, G.; Xuesong, H.; Lijia, W. Why choose Random Forest to predict rare species distribution with few samples in large undersampled areas? Three Asian crane species models provide supporting evidence. PeerJ 2017, 5, e2849. [Google Scholar]
- Piras, P.; Sheridan, R.; Sherer, E.C.; Schafer, W.; Welch, C.J.; Roussel, C. Modeling and predicting chiral stationary phase enantioselectivity: An efficient random forest classifier using an optimally balanced training dataset and an aggregation strategy. J. Sep. Sci. 2018, 41, 1365–1375. [Google Scholar] [CrossRef]
- De’ath, G.; Fabricius, K.E. Classification and regression trees: A powerful yet simple technique for ecological data analysis. Ecology 2000, 81, 3178–3192. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Peters, J.; Baets, B.D.; Verhoest, N.E.C.; Samson, R.; Degroeve, S.; Becker, P.D.; Huybrechts, W. Random forests as a tool for ecohydrological distribution modelling. Ecol. Model. 2007, 207, 304–318. [Google Scholar] [CrossRef]
- Bradter, U.; Kunin, W.; Altringham, J.D.; Thom, T.J.; Benton, T.G. Identifying appropriate spatial scales of predictors in species distribution models with the random forest algorithm. Methods Ecol. Evol. 2013, 4, 167–174. [Google Scholar] [CrossRef]
- Ma, J.; Shao, G. Rediscovery of the first collection of the ‘living fossil’, Metasequoia glyptostroboides. Taxon 2003, 52, 585–588. [Google Scholar] [CrossRef]
- Farjon, A. Metasequoia Glyptostroboides; The IUCN Red List of Threatened Species; IUCN: Gland, Switzerland, 2013. [Google Scholar]
- Equiza, M.A.; Day, M.E.; Jagels, R. Physiological responses of three deciduous conifers (Metasequoia glyptostroboides, Taxodium distichum and Larix laricina) to continuous light: Adaptive implications for the early Tertiary polar summer. Tree Physiol. 2006, 26, 353–364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Charles Nelson, E. Metasequoia glyptostroboides, the dawn redwood: Some Irish glosses on its discovery and introduction into cultivation. Curtis’s Bot. Mag. 2010, 15, 77–80. [Google Scholar] [CrossRef]
- Bajpai, V.K.; Kang, S.C. Antifungal activity of leaf essential oil and extracts of Metasequoia glyptostroboides, Miki ex Hu. J. Am. Oil Chem. Soc. 2010, 87, 327–336. [Google Scholar] [CrossRef]
- Bajpai, V.K.; Rahman, A.; Choi, U.K.; Youn, S.J.; Kang, S.C. Inhibitory parameters of the essential oil and various extracts of Metasequoia glyptostroboides Miki ex Hu to reduce food spoilage and food-borne pathogens. Food Chem. 2007, 105, 1061–1066. [Google Scholar] [CrossRef]
- Li, Y.Y.; Chen, X.Y.; Zhang, X.; Wu, T.Y.; Lu, H.P.; Cai, Y.W. Genetic differences between wild and artificial populations of Metasequoia glyptostroboides: Implications for species recovery. Conserv. Biol. 2010, 19, 224–231. [Google Scholar] [CrossRef]
- Zhang, H.; Guo, W.; Yu, M.; Wang, G.G.; Wu, T. Latitudinal patterns of leaf N, P stoichiometry and nutrient resorption of Metasequoia glyptostroboides along the eastern coastline of China. Sci. Total Environ. 2018, 618, 1–6. [Google Scholar] [CrossRef]
- Payton, G. Conserving the dawn redwood: The ex situ collection at the dawes arboretum. Arnoldia 2010, 68, 26–33. [Google Scholar]
- Tang, C.Q.; Yang, Y.C.; Ohsawa, M.; Momohara, A.; Hara, M.; Cheng, S.L.; Fan, S.H. Population structure of relict Metasequoia glyptostroboides and its habitat fragmentation and degradation in south-central China. Biol. Conserv. 2011, 144, 279–289. [Google Scholar] [CrossRef]
- Poncet, V.; Munoz, F.; Munzinger, J.; Pillon, Y.; Gomez, C.; Couderc, M.; Tranchant-Dubreuil, C.; Hamon, S.; De Kochko, A. Phylogeography and niche modelling of the relict plant Amborella trichopoda (Amborellaceae) reveal multiple Pleistocene refugia in New Caledonia. Mol. Ecol. 2013, 22, 6163–6178. [Google Scholar] [CrossRef]
- Wang, X.; Ma, L.; Guo, B.; Fan, S.; Tan, J. Analysis of the change in the original Metasequoia glyptostroboides population and its environment in Lichuan, Hubei from 1948 to 2003. Acta Ecol. Sin. 2006, 1, 285–291. [Google Scholar] [CrossRef]
- Puckett, E.E.; Etter, P.D.; Johnson, E.A.; Eggert, L.S. Phylogeographic analyses of American black bears (Ursus americanus) suggest four glacial refugia and complex patterns of post-glacial admixture. Mol. Biol. Evol. 2015, 32, 2338–2350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tremblay, N.O.; Schoen, D.J. Molecular phylogeography of Dryas integrifolia: Glacial refugia and postglacial recolonization. Mol. Ecol. 1999, 8, 1187–1198. [Google Scholar] [CrossRef] [PubMed]
- Gavin, D.G.; Fitzpatrick, M.C.; Gugger, P.F.; Heath, K.D.; Rodríguez-Sánchez, F.; Dobrowski, S.Z.; Hampe, A.; Hu, F.S.; Ashcroft, M.B.; Bartlein, P.J.; et al. Climate refugia: Joint inference from fossil records, species distribution models and phylogeography. New Phytol. 2014, 204, 37–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stewart, J.R.; Stringer, C.B. Human evolution out of Africa: The role of refugia and climate change. Science 2012, 335, 1317–1321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeffers, E.S.; Whitehouse, N.J.; Lister, A.; Plunkett, G.; Barratt, P.; Smyth, E.; Lamb, P.; Dee, M.W.; Brooks, S.J.; Willis, K.J.; et al. Plant controls on late quaternary whole ecosystem structure and function. Ecol. Lett. 2018, 21, 814–825. [Google Scholar] [CrossRef]
- Francisco, J.V.; Chris, D.P.; Joachim, W.K. Phylogeography of a Tertiary relict plant, Meconopsis cambrica (papaveraceae), implies the existence of northern refugia for a temperate herb. Mol. Ecol. 2012, 21, 1423–1437. [Google Scholar]
- Millar, C.I.; Charlet, D.A.; Westfall, R.D.; King, J.C.; Delany, D.L.; Flint, A.L.; Flint, L.E. Do low-elevation ravines provide climate refugia for subalpine limber pine (Pinus flexilis) in the great basin, USA? Can. J. For. Res. 2018, 48, 663–671. [Google Scholar] [CrossRef] [Green Version]
- Bucklin, D.N.; Basille, M.; Benscoter, A.M.; Brandt, L.A.; Mazzotti, F.J.; Romañach, S.S.; Speroterra, C.; Watling, J.I. Comparing species distribution models constructed with different subsets of environmental predictors. Divers. Distrib. 2015, 21, 23–35. [Google Scholar] [CrossRef]
- Wang, Y.S.; Xie, B.Y.; Wang, F.H.; Xiao, Q.M.; Dai, L.Y. Application of ROC curve analysis in evaluating the performance of alien species’ potential distribution models. Biodivers. Sci. 2007, 15, 365–372. [Google Scholar]
- Allouche, O.; Tsoar, A.; Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 2010, 43, 1223–1232. [Google Scholar] [CrossRef]
- Mouton, A.M.; Baets, B.D.; Goethals, P.L.M. Ecological relevance of performance criteria for species distribution models. Ecol. Model. 2010, 221, 1995–2002. [Google Scholar] [CrossRef]
- Lu, C.Y.; Gu, W.; Dai, A.H.; Wei, H.Y. Assessing habitat suitability based on geographic information system (GIS) and fuzzy: A case study of Schisandra sphenanthera Rehd. et Wils. in Qinling Mountains, China. Ecol. Model. 2012, 242, 105–115. [Google Scholar] [CrossRef]
- Xue, S.F.; Sun, T.; Zhang, H.Y.; Shao, D.D. Suitable habitat mapping in the Yangtze River Estuary influenced by land reclamations. Ecol. Eng. 2016, 97, 64–73. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.L.; Li, X.; Zhao, Z.; Wei, H.; Gao, B.; Wei, G. Prediction of the potential geographic distribution of the ectomycorrhizal mushroom Tricholoma matsutake under multiple climate change scenarios. Sci. Rep. 2017, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Q.Z.; Wei, H.Y.; Zhao, Z.F.; Liu, J.; Ran, Q.; Yu, J.H.; Gu, W. Optimization of the fuzzy matter element method for predicting species suitability distribution based on environmental data. Sustainability 2018, 10, 3444. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.L.; Wei, H.Y.; Lu, C.Y.; Gao, B.; Gu, W. Predictions of potential geographical distribution and quality of Schisandra sphenanthera under climate change. PeerJ 2016, 4, e2554. [Google Scholar] [CrossRef] [Green Version]
- Chou, Y.W.; Thomas, P.I.; Ge, X.J.; Lepage, B.A.; Wang, C.N. Refugia and phylogeography of Taiwania in East Asia. J. Biogeogr. 2011, 38, 1992–2005. [Google Scholar] [CrossRef]
- Stolldorf, T.; Schenke, H.W.; Anderson, J.B. LGM ice sheet extent in the Weddell Sea: Evidence for diachronous behavior of Antarctic Ice Sheets. Quat. Sci. Rev. 2012, 48, 20–31. [Google Scholar] [CrossRef]
- Gogol-prokurat, M. Predicting habitat suitability for rare plants at local spatial scales using a species distribution model. Ecol. Appl. 2011, 21, 33–47. [Google Scholar] [CrossRef]
- Shitara, T.; Nakamura, Y.; Matsui, T.; Tsuyama, I.; Ohashi, H.; Kamijo, T. Formation of disjunct plant distributions in northeast asia: A case study of Betula davurica using a species distribution model. Plant Ecol. 2018, 219, 1105–1115. [Google Scholar] [CrossRef]
- Susset, E.C.; Magro, A.; Hemptinne, J. Using species distribution models to locate animal aggregations: A case study with Hippodamia undecimnotata (Schneider) overwintering aggregation sites. Ecol. Entomol. 2017, 42, 345–354. [Google Scholar] [CrossRef]
- Rogan, J.; Franklin, J.; Stow, D.; Miller, J.; Woodcock, C.; Roberts, D. Mapping land-cover modifications over large areas: A comparison of machine learning algorithms. Rem. Sens. Environ. 2008, 112, 2272–2283. [Google Scholar] [CrossRef]
- Breiman, L. Statistical modeling: The two cultures (with comments and a rejoinder by the author). Stat. Sci. 2001, 16, 199–215. [Google Scholar] [CrossRef]
- Watling, J.I.; Brandt, L.A.; Bucklin, D.N.; Fujisaki, I.; Mazzotti, F.J.; Romañach, S.S.; Speroterra, C. Performance metrics and variance partitioning reveal sources of uncertainty in species distribution models. Ecol. Model. 2015, 309−310, 48–59. [Google Scholar] [CrossRef]
- Liu, J.; Yang, Y.; Wei, H.Y.; Zhang, Q.Z.; Zhang, X.H.; Zhang, X.Y.; Gu, W. Assessing habitat suitability of parasitic plant Cistanche deserticola in northwest China under future climate scenarios. Forests 2019, 10, 823. [Google Scholar] [CrossRef] [Green Version]
- Soberon, J.; Townsend Peterson, A. Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodivers. Inform. 2005, 2, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Pliscoff, P.; Luebert, F.; Hilger, H.H.; Guisan, A. Effects of alternative sets of climatic predictors on species distribution models and associated estimates of extinction risk: A test with plants in an arid environment. Ecol. Model. 2014, 288, 166–177. [Google Scholar] [CrossRef]
- Dyderski, M.K.; Paz, S.; Frelich, L.E.; Jagodzimski, A.M. How much does climate change threaten European forest tree species distributions? Glob. Chang. Biol. 2018, 24, 1150–1163. [Google Scholar] [CrossRef]
- Guo, Y.L.; Li, X.; Zhao, Z.F. Predicting the impacts of climate change, soils and vegetation types on the geographic distribution of Polyporus umbellatus in China. Sci. Total Environ. 2019, 648, 1–11. [Google Scholar] [CrossRef]
- Hamilton, C.M.; Bateman, B.L.; Gorzo, J.M.; Reid, B.; Thogmartin, W.E.; Peery, M.Z.; Heglund, P.J.; Radeloff, V.C.; Pidgeon, A.M. Slow and steady wins the race? Future climate and land use change leaves the imperiled Blanding’s turtle (Emydoidea blandingii) behind. Biol. Conserv. 2018, 222, 75–85. [Google Scholar] [CrossRef]
- Li, G.; Xu, G.; Guo, K.; Du, S. Geographical boundary and climatic analysis of pinus tabulaeformis in China: Insights on its afforestation. Ecol. Eng. 2016, 86, 75–84. [Google Scholar] [CrossRef]
- Donaldson, J.S. Botanic gardens science for conservation and global change. Trends Plant Sci. 2009, 14, 608–613. [Google Scholar] [CrossRef] [PubMed]
- Hannah, L.; Flint, L.; Syphard, A.D.; Moritz, M.A.; Buckley, L.B.; Mccullough, I.M. Fine-grain modeling of species’ response to climate change: Holdouts, stepping-stones, and microrefugia. Trends Ecol. Evol. 2014, 29, 390–397. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.F.; Wang, W.T.; Liao, W.J.; Wang, H.F.; Zhang, D.Y. Multiple glacial refugia for cool-temperate deciduous trees in northern East Asia: The Mongolian oak as a case study. Mol. Ecol. 2016, 24, 5676–5691. [Google Scholar] [CrossRef]
- Harrison, S.P.; Yu, G.; Takahara, H.; Prentice, I.C. Palaeovegetation - diversity of temperate plants in East Asia. Nature 2001, 413, 129–130. [Google Scholar] [CrossRef]
- Bennett, K.D.; Tzedakis, P.C.; Willis, K.J. Quaternary refugia of north European trees. J. Biogeogr. 1991, 18, 103–115. [Google Scholar] [CrossRef]
- Martinet, B.; Lecocq, T.; Brasero, N.; Biella, P.; Urbanová, K.; Valterová, I.; Cornalba, M.; Gjershaug, J.; Michez, D.; Rasmont, P. Following the cold: Geographical differentiation between interglacial refugia and speciation in the arcto-alpine species complex Bombus monticola (Hymenoptera: Apidae). Syst. Entomol. 2018, 43, 200–217. [Google Scholar] [CrossRef]
- Gathorne-Hardy, F.J.; Syaukani, R.G.; Davies, P.E.; Jones, D.T. Quaternary rainforest refugia in south-east Asia: Using termites (Isoptera) as indicators. Biol. J. Linn. Soc. 2015, 75, 453–466. [Google Scholar] [CrossRef] [Green Version]
- Tian, S.; Kou, Y.X.; Zhang, Z.R.; Yuan, L.; Li, D.; López-Pujol, J.; Fan, D.; Zhang, Z.Y. Phylogeography of Eomecon chionantha in subtropical China: The dual roles of the Nanling Mountains as a glacial refugium and a dispersal corridor. BMC Evol. Biol. 2018, 18, 20. [Google Scholar] [CrossRef] [Green Version]
- Fedorov, V.B.; Stenseth, N.C. Multiple glacial refugia in the North American Arctic: Inference from phylogeography of the collared lemming (Dicrostonyx groenlandicus). Proc. Biol. Sci. 2002, 269, 2071–2077. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Palacios, J.M.; Nascimento, L.D.; Rüdiger, O.; Delgado, J.D.; García-del-Rey, E.; Arévalo, J.R.; Whittaker, R.J. A reconstruction of Palaeo-Macaronesia, with particular reference to the long-term biogeography of the Atlantic island laurel forests. J. Biogeogr. 2011, 38, 226–246. [Google Scholar] [CrossRef]
- Michael, D.M.; Humphrey, Q.P.C.; Simon, J.D.; Nicholas, A.M. Resilience to climate change: Translating principles into practice. J. Appl. Ecol. 2012, 49, 547–551. [Google Scholar]
- Ihlow, F.; Dambach, J.; Engler, J.O.; Flecks, M.; Hartmann, T.; Nekum, S.; Rajaei, H.; Rödder, D. On the brink of extinction? How climate change may affect global chelonian species richness and distribution. Glob. Chang. Biol. 2012, 18, 1520–1530. [Google Scholar] [CrossRef]
- He, D.; Lu, Z.L.; Li, D.Z. Differentiation characteristics of a 50-year-established Metasequoia glyptostroboides plantation. J. Trop. Subtrop. Bot. 2009, 33, 69–73. [Google Scholar]
- Ma, J.S. A worldwide survey of cultivated Metasequoia glyptostroboides hu & cheng (Taxodiaceae: Cupressaceae) from 1947 to 2007. Bull. Peabody Mus. Nat. Hist. 2016, 48, 235–253. [Google Scholar]
Abbreviation | Parameter (Unit) | Selected |
---|---|---|
BIO1 | Annual Mean Temperature (°C) | √ |
BIO2 | Mean Diurnal Range [Mean of monthly (max temp–min temp)] (°C) | √ |
BIO3 | Isothermality (BIO2/BIO7) (*100) (%) | |
BIO4 | Temperature Seasonality (standard deviation *100) (°C) | |
BIO5 | Max Temperature of Warmest Month (°C) | |
BIO6 | Min Temperature of Coldest Month (°C) | √ |
BIO7 | Temperature Annual Range (BIO5–BIO6) (°C) | √ |
BIO8 | Mean Temperature of Wettest Quarter (°C) | |
BIO9 | Mean Temperature of Driest Quarter (°C) | √ |
BIO10 | Mean Temperature of Warmest Quarter (°C) | √ |
BIO11 | Mean Temperature of Coldest Quarter (°C) | |
BIO12 | Annual Precipitation (mm) | √ |
BIO13 | Precipitation of Wettest Month (mm) | √ |
BIO14 | Precipitation of Driest Month (mm) | |
BIO15 | Precipitation Seasonality (Coefficient of Variation: mean/SD*100) (%) | |
BIO16 | Precipitation of Wettest Quarter (mm) | √ |
BIO17 | Precipitation of Driest Quarter (mm) | |
BIO18 | Precipitation of Warmest Quarter (mm) | √ |
BIO19 | Precipitation of Coldest Quarter (mm) |
Climate Scenario | Decrease (%) | Increase (%) | Unchanged (%) |
---|---|---|---|
under RCP4.5 in the 2050s | 30.11 | 30.91 | 38.98 |
under RCP4.5 in the 2070s | 18.98 | 37.49 | 43.53 |
under RCP8.5 in the 2050s | 22.64 | 38.68 | 38.68 |
under RCP8.5 in the 2070s | 22.68 | 37.46 | 39.86 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Wei, H.; Zhang, X.; Liu, J.; Zhang, Q.; Gu, W. Non-Pessimistic Predictions of the Distributions and Suitability of Metasequoia glyptostroboides under Climate Change Using a Random Forest Model. Forests 2020, 11, 62. https://doi.org/10.3390/f11010062
Zhang X, Wei H, Zhang X, Liu J, Zhang Q, Gu W. Non-Pessimistic Predictions of the Distributions and Suitability of Metasequoia glyptostroboides under Climate Change Using a Random Forest Model. Forests. 2020; 11(1):62. https://doi.org/10.3390/f11010062
Chicago/Turabian StyleZhang, Xiaoyan, Haiyan Wei, Xuhui Zhang, Jing Liu, Quanzhong Zhang, and Wei Gu. 2020. "Non-Pessimistic Predictions of the Distributions and Suitability of Metasequoia glyptostroboides under Climate Change Using a Random Forest Model" Forests 11, no. 1: 62. https://doi.org/10.3390/f11010062
APA StyleZhang, X., Wei, H., Zhang, X., Liu, J., Zhang, Q., & Gu, W. (2020). Non-Pessimistic Predictions of the Distributions and Suitability of Metasequoia glyptostroboides under Climate Change Using a Random Forest Model. Forests, 11(1), 62. https://doi.org/10.3390/f11010062