Determining a Carbon Reference Level for a High-Forest-Low-Deforestation Country
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Area
2.2. Working Definitions: Scale, Scope, Forest Definition, and Virtual Reporting Periods
2.3. Remote Sensing of Activity Data
2.4. Emission Factors from the National Forest Inventory
2.5. Adjustment of the Reference Level to National Circumstances
2.5.1. Population
2.5.2. Consumption
2.5.3. Trade
2.5.4. Agricultural Production
2.5.5. Harvested Area and Arable Land
2.5.6. Deforestation and Emissions
2.5.7. Model Validation—Comparison of Model Results with Observed Variables
2.5.8. Projecting Other Drivers—Industrial Agriculture and Infrastructure
2.6. Sensitivity Analysis of Input Data and Methods
3. Results
3.1. Forest Loss during the Reference Period 2000–2015
3.2. Emission Factors from the NFI
3.3. Adjustment of the Reference Level to National Circumstances
3.4. Sensitivity of the Reference Level to Input Data
4. Discussion
4.1. Uncertainties and Limitations of Approach and Results
4.2. Policy Implications
5. Conclusions and Recommendations
5.1. Priorities for Improving Activity Data
5.2. Priorities for Improving Emission Factors and the Next NFI
5.3. From UNFCCC Reporting to Performance-Based Payments
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
2000–2005 | 2005–2010 | 2010–2015 | 2015–2020 | 2020–2025 | 2025–2030 | 2030–2035 | |
---|---|---|---|---|---|---|---|
Cassava | 4.84 | 9.59 | 8.52 | 5.68 | 5.99 | 7.22 | 7.99 |
Mais | 5.13 | 6.64 | 9.55 | 8.75 | 11.63 | 15.57 | 19.47 |
Beans | 0.02 | 0.02 | 0.03 | 0.02 | 0.01 | 0.01 | 0.00 |
Millet/Sorghum | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Oil palm | 0.34 | 0.33 | 0.52 | 0.51 | 0.60 | 0.67 | 0.73 |
Plantain | 4.82 | 5.16 | 6.68 | 8.43 | 11.23 | 14.22 | 17.67 |
Ground nuts | 4.57 | 4.61 | 6.31 | 7.63 | 9.24 | 10.22 | 11.66 |
Banana | 1.44 | 1.21 | 2.07 | 2.10 | 2.68 | 3.37 | 4.10 |
Cacao | 19.84 | 23.08 | 47.57 | 15.55 | 33.56 | 33.56 | 33.56 |
Cotton | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Appendix B
Crop Name | Annual/Perennial (for EF Calculation) |
---|---|
Banana | Annual |
Beans | Annual |
Cassava | Annual |
Cocoa | Perennial |
Ground nut | Annual |
Maize | Annual |
Oil palm | Perennial |
Plantain | Perennial |
Rubber | Perennial |
Appendix C
Disturbance Class | Description of Disturbance |
---|---|
Infrastructure | Geometric areas with very high reflectance value |
Croplands | Permanent small and medium-scale agriculture |
Logging (Road, selective) – Industrial | Located inside allocated logging concessions; signs of logging infrastructure visible |
Mining | Permanent openings with high, stable reflectance |
Natural (Wildfires, windfalls, river meandering and other natural disturbances) | Immediate proximity to rivers; fires database |
Non-industrial logging | Very short (annual) openings |
Road construction | Linear shapes with high reflectance values |
Smallholder clearing | Openings for smallholder agriculture (≤ca 1ha) visible for 2–3 years; remainder of all above |
References
- IPCC. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; IPCC: Geneva, Switzerland, 2019. [Google Scholar]
- Pachauri, R.K.; Reisinger, A. Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2007. [Google Scholar]
- Griscom, B.W.; Adams, J.; Ellis, P.W.; Houghton, R.A.; Lomax, G.; Miteva, D.A.; Schlesinger, W.H.; Shoch, D.; Siikamäki, J.V.; Smith, P.; et al. Natural climate solutions. Proc. Natl. Acad. Sci. USA 2017. [Google Scholar] [CrossRef] [PubMed]
- Rockström, J.; Gaffney, O.; Rogelj, J.; Meinshausen, M.; Nakicenovic, N.; Schellnhuber, H.J. A roadmap for rapid decarbonization. Science 2017, 355, 1269–1271. [Google Scholar] [CrossRef] [PubMed]
- Fischer, R.; Hargita, Y.; Günter, S. Insights from the ground level? A content analysis review of multi-national REDD+ studies since 2010. Forest Policy Econ. 2016, 66, 47–58. [Google Scholar] [CrossRef]
- Da Fonseca, G.A.B.; Rodriguez, C.M.; Midgley, G.; Busch, J.; Hannah, L.; Mittermeier, R.A. No Forest Left Behind. PLoS Biol. 2007, 5, e216. [Google Scholar] [CrossRef] [PubMed]
- Obersteiner, M.; Huettner, M.; Kraxner, F.; McCallum, I.; Aoki, K.; Böttcher, H.; Fritz, S.; Gusti, M.; Havlik, P.; Kindermann, G.; et al. On fair, effective and efficient REDD mechanism design. Carbon Balance Manag. 2009, 4, 11. [Google Scholar] [CrossRef]
- Griscom, B.; Shoch, D.; Stanley, B.; Cortez, R.; Virgilio, N. Sensitivity of amounts and distribution of tropical forest carbon credits depending on baseline rules. Environ. Sci. Policy 2009, 12, 897–911. [Google Scholar] [CrossRef]
- Pirard, R.; Karsenty, A. Climate Change Mitigation: Should “Avoided Deforestation” Be Rewarded? J. Sustain. For. 2009, 28, 434–455. [Google Scholar] [CrossRef]
- Seyller, C.; Desbureaux, S.; Ongolo, S.; Karsenty, A.; Simonet, G.; Faure, J.; Brimont, L. The “virtual economy” of REDD+ projects: Does private certification of REDD+ projects ensure their environmental integrity? Int. For. Rev. 2016, 18, 231–246. [Google Scholar] [CrossRef]
- Karsenty, A.; Aubert, S.; Brimont, L.; Dutilly, C.; Desbureaux, S.; Ezzine de Blas, D.; Le Velly, G. The Economic and Legal Sides of Additionality in Payments for Environmental Services. Environ. Policy Gov. 2017, 27, 422–435. [Google Scholar] [CrossRef]
- Sax, S. Fears of a Dire Precedent as Brazil Seeks Results-based REDD+ Payment. 2019. Available online: https://news.mongabay.com/2019/02/fears-of-a-dire-precedent-as-brazil-seeks-results-based-redd-payment/ (accessed on 16 May 2019).
- Dezécache, C.; Salles, J.-M.; Hérault, B. Questioning emissions-based approaches for the definition of REDD+ deforestation baselines in high forest cover/low deforestation countries. Carbon Balance Manag. 2018, 13, 21. [Google Scholar] [CrossRef]
- Hein, J.; Guarin, A.; Frommé, E.; Pauw, P. Deforestation and the Paris climate agreement: An assessment of REDD+ in the national climate action plans. Forest Policy Econ. 2018, 90, 7–11. [Google Scholar] [CrossRef]
- Forsell, N.; Turkovska, O.; Gusti, M.; Obersteiner, M.; den Elzen, M.; Havlik, P. Assessing the INDCs’ land use, land use change, and forest emission projections. Carbon Balance Manag. 2016, 11, 26. [Google Scholar] [CrossRef] [PubMed]
- FAO. From Reference Levels to Results Reporting: REDD+ under the UNFCCC; 2018 update; FAO: Rome, Italy, 2018. [Google Scholar]
- Gizachew, B.; Duguma, L.A. Forest Carbon Monitoring and Reporting for REDD+: What Future for Africa? Environ. Manag. 2016, 58, 922–930. [Google Scholar] [CrossRef] [PubMed]
- Bucki, M.; Cuypers, D.; Mayaux, P.; Achard, F.; Estreguil, C.; Grassi, G. Assessing REDD+ performance of countries with low monitoring capacities: The matrix approach. Environ. Res. Lett. 2012, 7, 014031. [Google Scholar] [CrossRef]
- Pelletier, J.; Martin, D.; Potvin, C. REDD+ emissions estimation and reporting: Dealing with uncertainty. Environ. Res. Lett. 2013, 8, 034009. [Google Scholar] [CrossRef]
- Bos, A.B.; De Sy, V.; Duchelle, A.E.; Herold, M.; Martius, C.; Tsendbazar, N.-E. Global data and tools for local forest cover loss and REDD+ performance assessment: Accuracy, uncertainty, complementarity and impact. Int. J. Appl. Earth Obs. Geoinf. 2019, 80, 295–311. [Google Scholar] [CrossRef]
- Romijn, E.; De Sy, V.; Herold, M.; Böttcher, H.; Roman-Cuesta, R.M.; Fritz, S.; Schepaschenko, D.; Avitabile, V.; Gaveau, D.; Verchot, L.; et al. Independent data for transparent monitoring of greenhouse gas emissions from the land use sector – What do stakeholders think and need? Environ. Sci. Policy 2018, 85, 101–112. [Google Scholar] [CrossRef]
- Mertens, B.; Sunderlin, W.D.; Ndoye, O.; Lambin, E.F. Impact of Macroeconomic Change on Deforestation in South Cameroon: Integration of Household Survey and Remotely-Sensed Data. World Dev. 2000, 28, 983–999. [Google Scholar] [CrossRef]
- Bikie, H.; Ndoye, O.; Sunderlin, W.D. L’Impact de la Crise Economique sur les Systemes Agricoles et la Changement du Couvert Forestier Dans la Zone Forestiere Humide du Cameroun; CIFOR Occasional Paper; CIFOR: Bogor Indonesia, 2000. [Google Scholar] [CrossRef]
- Ndoye, O.; Kaimowitz, D. Macro-economics, markets and the humid forests of Cameroon, 1967–1997. J. Mod. Afr. Stud. 2000, 38, 225–253. [Google Scholar] [CrossRef]
- Tegegne, Y.T.; Lindner, M.; Fobissie, K.; Kanninen, M. Evolution of drivers of deforestation and forest degradation in the Congo Basin forests: Exploring possible policy options to address forest loss. Land Use Policy 2016, 51, 312–324. [Google Scholar] [CrossRef]
- Ordway, E.M.; Asner, G.P.; Lambin, E.F. Deforestation risk due to commodity crop expansion in sub- Saharan Africa. Environ. Res. Lett. 2017, 12, 044015. [Google Scholar] [CrossRef]
- Ordway, E.M.; Naylor, R.L.; Nkongho, R.N.; Lambin, E.F. Oil palm expansion at the expense of forests in Southwest Cameroon associated with proliferation of informal mills. Nat. Commun. 2019, 10, 114. [Google Scholar] [CrossRef] [PubMed]
- Carodenuto, S.; Merger, E.; Essomba, E.; Panev, M.; Pistorius, T.; Amougou, J. A Methodological Framework for Assessing Agents, Proximate Drivers and Underlying Causes of Deforestation: Field Test Results from Southern Cameroon. Forests 2015, 6, 203–224. [Google Scholar] [CrossRef]
- Stehfest, E.; van Zeist, W.-J.; Valin, H.; Havlik, P.; Popp, A.; Kyle, P.; Tabeau, A.; Mason-D’Croz, D.; Hasegawa, T.; Bodirsky, B.L.; et al. Key determinants of global land-use projections. Nat. Commun. 2019, 10, 2166. [Google Scholar] [CrossRef]
- WWF. Africa: Cameroon, Central African Republic, Gabon, and Republic of the Congo. Available online: https://www.worldwildlife.org/ecoregions/at0126 (accessed on 17 May 2019).
- République du Cameroun. Analyse Approfondie Des Options Strategiques Susceptibles De Regler La Deforestation Et La Degradation Dans Rapport Final Analyse Approfondie Des Options Strate- Giques Susceptibles De Regler La Defores- Rapport Final; Republic of Cameroon: Yaoundé, Cameroon, 2017. [Google Scholar]
- Potapov, P.V.; Turubanova, S.A.; Hansen, M.C.; Adusei, B.; Broich, M.; Altstatt, A.; Mane, L.; Justice, C.O. Quantifying forest cover loss in Democratic Republic of the Congo, 2000-2010, with Landsat ETM+ data. Remote Sens. Environ. 2012, 122, 106–116. [Google Scholar] [CrossRef]
- Olofsson, P.; Foody, G.M.; Stehman, S.V.; Woodcock, C.E. Making better use of accuracy data in land change studies: Estimating accuracy and area and quantifying uncertainty using stratified estimation. Remote Sens. Environ. 2013, 129, 122–131. [Google Scholar] [CrossRef]
- Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 2014, 148, 42–57. [Google Scholar] [CrossRef]
- Abena, J.C.; Medjo, R.; Blaise, J.; Salomon, P.; Méfé, N.; Salomon, B.; Fonweban, J.; Lekealem, J. Évaluation des Ressources Forestières Nationales du Cameroun; FAO: Rome, Italy, 2005. [Google Scholar]
- Chave, J.; Condit, R.; Aguilar, S.; Hernandez, A.; Lao, S.; Perez, R. Error propagation and scaling for tropical forest biomass estimates. Philos. Trans. R. Soc. B Biol. Sci. 2004, 359, 409–420. [Google Scholar] [CrossRef]
- Mokany, K.; Raison, J.; Prokushkin, A. Critical analysis of root: Shoot ratios in terrestrial biomes. Glob. Chang. Biol. 2006, 12, 84–96. [Google Scholar] [CrossRef]
- Dees, M. Analysis of Cameroon NFI 2003–2004 for REDD+ Reporting; [Unpublished]; Republic of Cameroon: Yaoundé, Cameroon, 2018. [Google Scholar]
- Tyukavina, A.; Hansen, M.C.; Potapov, P.; Parker, D.; Okpa, C.; Stehman, S.V.; Kommareddy, I.; Turubanova, S. Congo Basin forest loss dominated by increasing smallholder clearing. Sci. Adv. 2018, 4, eaat2993. [Google Scholar] [CrossRef] [Green Version]
- Ngom, E.; Ndjogui, E.; Nkongho, R.N.; Iyabano, A.; Levang, P.; Miaro, L., III; Feintrenie, L. Diagnostic du Secteur élæicole au Cameroun; CIRAD: Yaoundé Cameroun, 2014. [Google Scholar] [CrossRef]
- UN-DESA. World Population Prospects - Population Division-United Nations. 2019. Available online: https://population.un.org/wpp/Graphs/ (accessed on 12 July 2019).
- KC, S.; Lutz, W. The human core of the shared socioeconomic pathways: Population scenarios by age, sex and level of education for all countries to 2100. Glob. Environ. Chang. 2017, 42, 181–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dayang, R.; Minya, J. Caracteristiques de l’habitat et Cadre de vie des Populations; BUCREP: Yaoundé, Cameroon, 2015. [Google Scholar]
- The World Bank DataBank. 2019. Available online: https://databank.worldbank.org/home.aspx (accessed on 12 July 2019).
- Bennett, M.K. Wheat in National Diets. Wheat Stud. 1941, 18. [Google Scholar] [CrossRef]
- PAM Cameroon. Analyse Globale de la Sécurité Alimentaire et de la Vulnerabilité (2007); WFP: Yaoundé, Cameroon, 2007. [Google Scholar]
- Muhammad, A.; D’Souza, A.; Meade, B.; Micha, R.; Mozaffarian, D. The Influence of Income and Prices on Global Dietary Patterns by Country, Age, and Gender; The World Bank: Washington, DC, USA, 2017. [Google Scholar]
- Nkendah, R.; Ako, E.; Tamokwe, B.; Nzouessin, C.; Njoupouognigni, M.; Melingui, E.; Azeufouet, A. Le Commerce Transfrontalier Informel des Produits Agricoles et Horticoles Entre le Cameroun et ses Voisins de la CEMAC: Implications sur la Sécurité Alimentaire Sous régionale; Économie rurale Investment Climate and Business Environment Research Fund (ICBE-RF): Dakar, Sénégal, 2011; p. 324. [Google Scholar]
- Gromko, D.; Abdurasulova, G. Climate Change Mitigation and Food Loss and Waste Reduction: Exploring the Business Case; CCAFS: Wageningen, The Netherlands, 2018; p. 54. [Google Scholar]
- HLPE-CFS. Food Losses and Waste in the Context of Metropolitan Food and Nutrition Security; HLPE-CFS: Rome, Italy, 2014. [Google Scholar]
- FAOSTAT FAOSTAT Gateway. 2019. Available online: http://www.fao.org/faostat/en/#home (accessed on 12 July 2019).
- Raintree, J.B.; Warner, K. Agroforestry pathways for the intensification of shifting cultivation. Agrofor. Syst. 1986, 4, 39–54. [Google Scholar] [CrossRef]
- IGN. France Cartographies Forestières Historiques et Détaillées du Cameroun Résultats Statistiques Finaux; IGN: Paris, France, 2015. [Google Scholar]
- Defourny, P.; Bontemps, S.; Lamarche, S.; Brockmann, C.D.; Wevers, J.; Boettcher, M.; Santoro, M.; Kirches, G.; Moreau, I. Land Cover CCI Product User Guide Version 2.0; ESA: Louvain-la-Neuve, Belgium, 2017. [Google Scholar]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-resolution global maps of 21st-century forest cover change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [Green Version]
- Sartoretto, E.; Henriot, C.; Bassalang, M.; Nguiffo, S. How Existing Legal Frameworks Shape Forest Conversion to Agriculture; FAO: Rome, Italy, 2017. [Google Scholar]
- Cerutti, P.O.; Poufoun, J.N.; Karsenty, A.; Eba’a, R.; Atyi, A.; Nasi, R.; Fomete Nembot, T. The technical and political challenges of the industrial forest sector in Cameroon. Int. For. Rev. 2016, 18 (Suppl. 1), 25–39. [Google Scholar] [CrossRef]
- Feintrenie, L. Agro-industrial plantations in Central Africa, risks and opportunities. Biodivers. Conserv. 2014, 23, 1577–1589. [Google Scholar] [CrossRef]
- Bulmer, M.G. Principles of Statistics; Dover Publications: New York, NY, USA, 1979. [Google Scholar]
- Tchatchou, B.; Sonwa, D.; Ifo, S.; Tiani, A. Deforestation and Forest Degradation in the Congo Basin: State of Knowledge, Current Causes and Perspectives; CIFOR: Bogor, Indonesia, 2015. [Google Scholar]
- Dkamela, G.P.; Brockhaus, M.; Djiegni, F.K.; Schure, J.; Mvondo, S.A. Lessons for REDD + from Cameroon’s past forestry law reform: A political economy analysis. Ecol. Soc. 2014, 19, 30. [Google Scholar] [CrossRef] [Green Version]
- Megevand, C.; Dulal, H.; Braune, L.; Wekhamp, J. Deforestation Trends in the Congo Basin; Open Konwledge Repository: Washington, DC, USA, 2013. [Google Scholar]
- Austin, K.G.; González-Roglich, M.; Schaffer-Smith, D.; Schwantes, A.M.; Swenson, J.J. Trends in size of tropical deforestation events signal increasing dominance of industrial-scale drivers This. Environ. Res. Lett. 2017, 12. [Google Scholar] [CrossRef]
- Galford, G.L.; Soares-Filho, B.S.; Sonter, L.J.; Laporte, N. Will passive protection save Congo forests? PLoS ONE 2015, 10, e0128473. [Google Scholar] [CrossRef]
- Sandker, M.; Lee, D.; Crete, P.; Sanz-Sanchez, M. Emerging Approaches to Forest Reference Emission Levels and/or Forest Reference Levels for REDD+; FAO: Rome, Italy, 2014. [Google Scholar]
- Njogui, T.E.; Levang, P. Elites urbaines, élaiculture et question foncière au Cameroun. Territoires d’Afrique 2013, 5, 35–46. [Google Scholar]
- Levang, P. Le Développement du Palmier à Huile au Cameroun: Entre Accaparements Massifs, Agro-industries, élites et Petits Planteurs; CIRAD, IRD: Montpellier, France, 2012. [Google Scholar]
- République du Congo. Document de Programme de Réductions des Émissions (ER-PD). Programme de Réduction des Émissions dans la Sangha et la Likouala, République du Congo Date; Republic of Congo: Brazzaville, Republic of Congo, 2017. [Google Scholar]
- Forest Carbon Partnership Facility (FCPF). Emission Reductions Program Document (ER-PD) East Kalimantan Jurisdictional Emission Reductions Program, Indonesia; The World Bank: Washington, DC, USA, 2018. [Google Scholar]
- Sonkoue, M.; Nguiffo, S. Apes, Crops and Communities: Land Concessions and Conservation in Cameroon; IIED Briefing: London, UK, 2019. [Google Scholar]
- FAO. From Reference Levels to Results Reporting: REDD+ under the UNFCCC; FAO: Rome, Italy, 2017. [Google Scholar]
- GOFC-GOLD. A Sourcebook of Methods and Procedures for Monitoring and Reporting Anthropogenic Greenhouse Gas Emissions and Removals Associated with Deforestation, Gains and Losses of Carbon Stocks in Forests Remaining Forests, and Forestation, COP22-1st ed.; Achard, F., Boschetti, L., Brown, S., Brady, M., DeFries, R., Grassi, G., Herold, M., Mollicone, D., Mora, B., Pandey, D., et al., Eds.; Wageningen University: Wageningen, The Netherlands, 2016. [Google Scholar]
- Nkongho, R.; Nchanji, Y.; Tataw, O.; Levang, P. Less oil but more money! Artisanal palm oil milling in Cameroon. Afr. J. Agric. Res. 2014, 9, 1586–1596. [Google Scholar]
- Chong, K.L.; Kanniah, K.D.; Pohl, C.; Tan, K.P. A review of remote sensing applications for oil palm studies. Geo-Spat. Inf. Sci. 2017, 20, 184–200. [Google Scholar] [CrossRef] [Green Version]
- Miettinen, J.; Gaveau, D.L.A.; Liew, S.C. Comparison of visual and automated oil palm mapping in Borneo. Int. J. Remote Sens. 2019, 40, 8174–8185. [Google Scholar] [CrossRef]
- Molinario, G.; Hansen, M.C.; Potapov, P.V.; Tyukavina, A.; Stehman, S.; Barker, B.; Humber, M. Quantification of land cover and land use within the rural complex of the Democratic Republic of Congo. Environ. Res. Lett. 2017, 12, 104001. [Google Scholar] [CrossRef] [Green Version]
- Mitchard, E.T.; Saatchi, S.S.; Baccini, A.; Asner, G.P.; Goetz, S.J.; Harris, N.L.; Brown, S. Uncertainty in the spatial distribution of tropical forest biomass: A comparison of pan-tropical maps. Carbon Balance Manag. 2013, 8, 10. [Google Scholar] [CrossRef]
- Randall, S.; Coast, E. The quality of demographic data on older Africans. Demogr. Res. 2016, 34, 143–174. [Google Scholar] [CrossRef] [Green Version]
- Randall, S. Visibilité et invisibilité statistique en Afrique. Afr. Contemp. 2016, 258, 41. [Google Scholar] [CrossRef]
- Richer, E. Trade Data Overview: Cameroon; Forest Trends: Prague, Czech Republic, 2016. [Google Scholar]
- FCPF. Carbon Fund Methodological Framework. The Forest Carbon Partnership Facility. 2016. Available online: https://www.forestcarbonpartnership.org/carbon-fund-methodological-framework (accessed on 3 January 2019).
- Pearson, T.R.H.; Brown, S.; Murray, L.; Sidman, G. Greenhouse gas emissions from tropical forest degradation: An underestimated source. Carbon Balance Manag. 2017, 12, 3. [Google Scholar] [CrossRef] [Green Version]
- Maria Roman-Cuesta, R.; Rufino, M.; Herold, M.; Butterbach-Bahl, K.; Rosenstock, T.S.; Herrero, M.; Ogle, S.; Li, C.; Poulter, B.; Verchot, L.; et al. Hotspots of gross emissions from the land use sector: Patterns, uncertainties, and leading emission sources for the period 2000–2005 in the tropics. Biogeosciences 2016, 13, 4253–4269. [Google Scholar] [CrossRef] [Green Version]
- Tsanga, R.; Lescuyer, G.; Cerutti, P.O. What is the role for forest certification in improving relationships between logging companies and communities? Lessons from FSC in Cameroon. Int. For. Rev. 2014, 16, 14–22. [Google Scholar] [CrossRef]
- Cerutti, P.O.; Suryadarma, D.; Nasi, R.; Forni, E.; Medjibe, V.; Delion, S.; Bastin, D. The impact of forest management plans on trees and carbon: Modeling a decade of harvesting data in Cameroon. J. For. Econ. 2017, 27, 1–9. [Google Scholar] [CrossRef]
- Alemagi, D.; Duguma, L.; Minang, P.A.; Nkeumoe, F.; Feudjio, M.; Tchoundjeu, Z. Intensification of cocoa agroforestry systems as a REDD plus strategy in Cameroon: Hurdles, motivations, and challenges. Int. J. Agric. Sustain. 2015, 13, 187–203. [Google Scholar] [CrossRef]
- Nijmeijer, A.; Lauri, P.-É.; Harmand, J.-M.; Saj, S. Carbon dynamics in cocoa agroforestry systems in Central Cameroon: Afforestation of savannah as a sequestration opportunity. Agrofor. Syst. 2019, 93, 851–868. [Google Scholar] [CrossRef]
- Nijmeijer, A.; Lauri, P.E.; Harmand, J.M.; Freschet, G.T.; Essobo Nieboukaho, J.D.; Fogang, P.K.; Enock, S.; Saj, S. Long-term dynamics of cocoa agroforestry systems established on lands previously occupied by savannah or forests. Agric. Ecosyst. Environ. 2019, 275, 100–111. [Google Scholar] [CrossRef]
- Lescuyer, G.; Cerutti, P.O.; Mendoula, E.E.; Eba, R.; Nasi, R. Chainsaw milling in the Congo Basin. In European Tropical Forest Research Network (ETFRN) News, 52nd ed.; Wit, M., van Dam, J., Cerutti, P.O., Lescuyer, G., Kerrett, R., Mckeown, J.P., Eds.; Tropenbos International: Wageningen, The Netherlands, 2010; pp. 121–128. [Google Scholar]
- Cerutti, P.O.; Eba’a Atyi, R.; Mendoula, E.E.; Gumbo, D.; Lescuyer, G.; Moombe, K.; Tsanga, R.; Walker, J. Sub-Saharan Africa’s invisible timber markets. ITTO Trop. For. Update 2017, 26, 3–5. [Google Scholar]
- Cerutti, P.O.; Lescuyer, G. The Domestic Market for Small-Scale Chainsaw Milling in Cameroon Present Situation, Opportunities and Challenges; CIFOR: Bogor, Indonesia, 2011. [Google Scholar]
- Bayol, N.; Anquetil, F.; Bile, C.; Bollen, A.; Bousquet, M.; Castadot, B.; Cerruti, P.; Kongape, J.A.; Leblanc, M.; Lescuyer, G.; et al. Filière bois d’oeuvre et gestion des forêts naturelles: Les bois tropicaux et les forêts d’Afrique centrale face aux évolutions des marchés. In Les Forêts du Bassin du Congo–État des Forêts 2013; de Wasseig. Neufchâteau: Weyrich, Belgique, 2014. [Google Scholar]
- Cerutti, P.O.; Tacconi, L.; Lescuyer, G.; Nasi, R. Cameroon’s Hidden Harvest: Commercial Chainsaw Logging, Corruption, and Livelihoods. Soc. Nat. Resour. 2013, 26, 539–553. [Google Scholar] [CrossRef]
- Cerutti, P.O.; Mbongo, M.; Vandenhaute, M. State of the timber sector in Cameroon (2015); FAO and CIFOR: Rome, Italy; Bogor, Indonesia, 2016. [Google Scholar]
- Robiglio, V.; Lescuyer, G.; Cerutti, P.O. From Farmers to Loggers: The Role of Shifting Cultivation Landscapes in Timber Production in Cameroon. Small-Scale For. 2013, 12, 67–85. [Google Scholar] [CrossRef]
- CIFOR, I. Domestic Markets, Cross-Border Trade and the Role of the Informal Sector in Côte d’Ivoire, Cameroon and the Democratic Republic of the Congo; CIFOR Report for ITTO: Yokohama, Japan, 2016. [Google Scholar]
- Eba’a Atyi, R.; Ngouhouo Poufoun, J.; Mvondo Awono, J.-P.; Ngoungoure Manjeli, A.; Sufo Kankeu, R. Economic and social importance of fuelwood in Cameroon. Int. For. Rev. 2016, 18, 52–65. [Google Scholar] [CrossRef]
- Schure, J.; Marien, J.-N.; De Wasseige, C.; Drigo, R.; Salbitano, F.; Dirou, S.; Nkoua, M. Contribution of woodfuel to meet the energy needs of the population of Central Africa: Prospects for sustainable management of available resources. In The Forests of the Congo Basin-State of the Forest 2010; Publications Office of the European Union: Luxembourg, 2012; pp. 109–122. [Google Scholar] [CrossRef]
- Kanmegne, J. Slash and Burn Agriculture in the Humid Forest Zone of Southern Cameroon: Soil Quality Dynamics, Improved Fallow Management and Farmers’ Perceptions; Wageningen University: Wageningen, The Netherlands, 2004. [Google Scholar]
- Chazdon, R.L.; Brancalion, P.H.S.; Laestadius, L.; Bennett-Curry, A.; Buckingham, K.; Kumar, C.; Moll-Rocek, J.; Vieira, I.C.G.; Wilson, S.J. When is a forest a forest? Forest concepts and definitions in the era of forest and landscape restoration. Ambio 2016, 45, 538–550. [Google Scholar] [CrossRef]
- Bouvet, A.; Mermoz, S.; Le Toan, T.; Villard, L.; Mathieu, R.; Naidoo, L.; Asner, G.P. An above-ground biomass map of African savannahs and woodlands at 25 m resolution derived from ALOS PALSAR. Remote Sens. Environ. 2018. [Google Scholar] [CrossRef]
- Heads of Delegation. Krutu of Paramaribo Joint Declaration on HFLD Climate Finance Mobilization. In Heads of Delegation and Representatives of High Forest Cover and Low Deforestation; Heads of Delegation: Paramaribo, Surinam, 2019. [Google Scholar]
- Verchot, L.V.; Zomer, R.; Van Straaten, O.; Muys, B. Implications of country-level decisions on the specification of crown cover in the definition of forests for land area eligible for afforestation and reforestation activities in the CDM. Clim. Chang. 2007, 81, 415–430. [Google Scholar] [CrossRef]
- Romijn, E.; Ainembabazi, J.H.; Wijaya, A.; Herold, M.; Angelsen, A.; Verchot, L.; Murdiyarso, D. Exploring different forest definitions and their impact on developing REDD+ reference emission levels: A case study for Indonesia. Environ. Sci. Policy 2013, 33, 246–259. [Google Scholar] [CrossRef]
- Business in Cameroon. Portuguese Company Mota-Engil to Build Mbalam-Kribi Railway. Business in Cameroon. 2014. Available online: https://www.businessincameroon.com/mining/0706-4873-portuguese-company-mota-engil-to-build-mbalam-kribi-railway (accessed on 17 July 2019).
- Business in Cameroon. Mbalam Mining Agreement between Australian Sundance Resources and Cameroon Lapsed. Business in Cameroon. 2019. Available online: https://www.businessincameroon.com/finance/3101-8808-mbalam-mining-agreement-between-australian-sundance-resources-and-cameroon-lapsed (accessed on 17 July 2019).
- Valin, H.; Sands, R.D.; van der Mensbrugghe, D.; Nelson, G.C.; Ahammad, H.; Blanc, E.; Bodirsky, B.; Fujimori, S.; Hasegawa, T.; Havlik, P.; et al. The future of food demand: Understanding differences in global economic models. Agric. Econ. 2014, 45, 51–67. [Google Scholar] [CrossRef]
- Mosnier, A.; Mant, R.; Pirker, J.; Bodin, P.; Ndinga, R.; Tonga, P.; Havlik, P.; Bocqueho, G.; Maukonen, P.; Obersteiner, M.; et al. Modelling Land Use Changes in the Republic of the Congo 2000–2030. A report by the REDD-PAC Project; IIASA, COMIFAC, UNEP-WCMC: Laxenburg, Austria; Yaounde, Cameroon; Cambridge, UK, 2015. [Google Scholar]
- Maraseni, T.; Reardon-Smith, K. Meeting National Emissions Reduction Obligations: A Case Study of Australia. Energies 2019, 12, 438. [Google Scholar] [CrossRef] [Green Version]
- Ordway, E.M.; Naylor, R.L.; Nkongho, R.N.; Lambin, E.F. Oil palm expansion in Cameroon: Insights into sustainability opportunities and challenges in Africa. Glob. Environ. Chang. 2017, 47, 190–200. [Google Scholar] [CrossRef]
- Wielaard, N. Satellite Imaging Making Deforestation-Free Cocoa Possible—Satelligence. 2019. Available online: https://satelligence.com/news/satellite-imaging-makingdeforestation-free-cocoa (accessed on 19 June 2019).
- Bégué, A.; Arvor, D.; Bellon, B.; Betbeder, J.; de Abelleyra, D.; PD Ferraz, R.; Lebourgeois, V.; Lelong, C.; Simões, M.; R Verón, S. Remote Sensing and Cropping Practices: A Review. Remote Sens. 2018, 10, 99. [Google Scholar] [CrossRef] [Green Version]
- Reiche, J.; Verhoeven, R.; Verbesselt, J.; Hamunyela, E.; Wielaard, N.; Herold, M. Characterizing Tropical Forest Cover Loss Using Dense Sentinel-1 Data and Active Fire Alerts. Remote Sens. 2018, 10, 777. [Google Scholar] [CrossRef] [Green Version]
- Starling Verify your Forest Impact. 2019. Available online: https://www.starling-verification.com/#ourTestimonies (accessed on 27 September 2019).
- Reiche, J.; Hamunyela, E.; Verbesselt, J.; Hoekman, D.; Herold, M. Improving near-real time deforestation monitoring in tropical dry forests by combining dense Sentinel-1 time series with Landsat and ALOS-2 PALSAR-2. Remote Sens. 2018, 204, 147–161. [Google Scholar] [CrossRef]
- Gaveau, D.; Sloan, S.; Molidena, E.; Yaen, H.; Sheil, D.; Abram, N.K.; Ancrenaz, M.; Nasi, R.; Quinones, M.; Wielaard, N.; et al. Four Decades of Forest Persistence, Clearance and Logging on Borneo. PLoS ONE 2014, 9, e101654. [Google Scholar] [CrossRef] [Green Version]
- Austin, K.G.; Mosnier, A.; Pirker, J.; McCallum, I.; Fritz, S.; Kasibhatla, P.S. Shifting patterns of oil palm driven deforestation in Indonesia and implications for zero-deforestation commitments. Land Use Policy 2017, 69, 41–48. [Google Scholar] [CrossRef] [Green Version]
- Kotto-Same, J.; Moukam, A.; Njomgang, R.; Tiki-Manga, T.; Tonye, J.; Diaw, C.; Gockowski, J.; Hauser, S.; Weise, S.; Nwaga, D.; et al. Alternatives to Slash-and-Burn: Summary Report and Synthesis of Phase II in Cameroon; ICRAF: Nairobi, Kenya, 2002. [Google Scholar]
- Chazdon, R.; Broadbent, E.N.; Rozendaal, D.M.A.; Bongers, F.; Zambrano, A.M.A.; Aide, T.M.; Balvanera, P.; Becknell, J.M.; Boukili, V.; Brancalion, P.H.; et al. Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics. Sci. Adv. 2016, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poorter, L.; Bongers, F.; Aide, T.M.; Almeyda Zambrano, A.M.; Balvanera, P.; Becknell, J.M.; Boukili, V.; Brancalion, P.H.; Broadbent, E.N.; Chazdon, R.L.; et al. Biomass resilience of Neotropical secondary forests. Nature 2016, 530, 211–214. [Google Scholar] [CrossRef] [PubMed]
- Hirschmugl, M.; Steinegger, M.; Gallaun, H.; Schardt, M. Mapping Forest Degradation due to Selective Logging by Means of Time Series Analysis: Case Studies in Central Africa. Remote Sens. 2014, 6, 756–775. [Google Scholar] [CrossRef] [Green Version]
- Kleinschroth, F.; Laporte, N.; Laurance, W.F.; Goetz, S.; Ghazoul, J. Road expansion and persistence in forests of the Congo Basin. Nat. Sustain. 2019. [Google Scholar] [CrossRef]
- Sufo Kankeu, R.; Sonwa, D.J.; Eba’a Atyi, R.; Moankang Nkal, N.M. Quantifying post logging biomass loss using satellite images and ground measurements in Southeast Cameroon. J. For. Res. 2016, 27, 1415–1426. [Google Scholar] [CrossRef]
- République du Congo. Niveau des Emissions de Référence pour les Forêts-Soumission au Secrétariat CCNUCC; République du Congo: Brazzaville, Republic of Congo, 2016. [Google Scholar]
- Mosnier, A.; Mant, R.; Pirker, J.; Makoudjou, A.; Awono, E.; Bodin, B.; Gillet, P.; Havlik, P.; Obersteiner, M.; Kapos, V.; et al. Modelling Land Use Changes in Cameroon 2000–2030; IIASA: Laxenburg, Austria, 2016. [Google Scholar]
- Shapiro, A.C.; Aguilar-Amuchastegui, N.; Hostert, P.; Bastin, J.-F. Using fragmentation to assess degradation of forest edges in Democratic Republic of Congo. Carbon Balance Manag. 2016, 11, 11. [Google Scholar] [CrossRef] [PubMed]
- Wardrop, N.A.; Jochem, W.C.; Bird, T.J.; Chamberlain, H.R.; Clarke, D.; Kerr, D.; Bengtsson, L.; Juran, S.; Seaman, V.; Tatem, A.J. Spatially disaggregated population estimates in the absence of national population and housing census data. Proc. Natl. Acad. Sci. USA 2018, 115, 3529–3537. [Google Scholar] [CrossRef] [Green Version]
- Republic of Côte d’Ivoire. Emissions Reduction Program Document for Taï National Park; Republic of Côte d’Ivoire: Abidjan, Côte d’Ivoire, 2019. [Google Scholar]
Population Density (inhab./km2) | Cultivation vs. Fallow Duration | Fallow Multiplier |
---|---|---|
<20 | 2y cultivation, 7y fallow | 3.5 |
20–30 | 2y cultivation, 5y fallow | 2.5 |
>30 | 2y cultivation, 3y fallow | 1.5 |
Domain | Potential Source of Error to Analyze | Unit | Number of Samples | Mean | SD (CV) |
---|---|---|---|---|---|
AD | Deforestation observed 2000–2015 | ha/year | 127 | 10,602 | 1837 (17%) |
EF | Forest biomass sampling | tCO2/ha | 45 | 490.13 | 35.39 (7%) |
EF | Non-Forest biomass sampling | tCO2/ha | 26 | 174.99 | 48 (27%) |
Adj | Potential development trajectories | Adjustment multiplier(dimensionless) | 6 | 1.44 | 0.12 (42%) |
Driver of Deforestation (2000–2015) | Area | Standard Error (%) | |
---|---|---|---|
(ha) | % | ||
Non-industrial agriculture | 159,037 | 72.3 | |
Infrastructure | 10,260 | 4.7 | |
Industrial agriculture | 30,128 | 13.7 | |
Other | 20,521 | 9.3 | |
Total | 219,947 | 100 | 10.45 |
Transition of Forest to | Emission Factor (tCO2/ha) * | Standard Error (±%) |
---|---|---|
Annual crops ** | 347.7 | 14.1 |
Perennial crops | 226.8 | 31.2 |
Fallow land | 332.1 | 11.2 |
Grassland | 462.3 | 5.9 |
Built-up areas | 490.1 | 4.3 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pirker, J.; Mosnier, A.; Nana, T.; Dees, M.; Momo, A.; Muys, B.; Kraxner, F.; Siwe, R. Determining a Carbon Reference Level for a High-Forest-Low-Deforestation Country. Forests 2019, 10, 1095. https://doi.org/10.3390/f10121095
Pirker J, Mosnier A, Nana T, Dees M, Momo A, Muys B, Kraxner F, Siwe R. Determining a Carbon Reference Level for a High-Forest-Low-Deforestation Country. Forests. 2019; 10(12):1095. https://doi.org/10.3390/f10121095
Chicago/Turabian StylePirker, Johannes, Aline Mosnier, Tatiana Nana, Matthias Dees, Achille Momo, Bart Muys, Florian Kraxner, and René Siwe. 2019. "Determining a Carbon Reference Level for a High-Forest-Low-Deforestation Country" Forests 10, no. 12: 1095. https://doi.org/10.3390/f10121095
APA StylePirker, J., Mosnier, A., Nana, T., Dees, M., Momo, A., Muys, B., Kraxner, F., & Siwe, R. (2019). Determining a Carbon Reference Level for a High-Forest-Low-Deforestation Country. Forests, 10(12), 1095. https://doi.org/10.3390/f10121095