Calibration and Assessment of Burned Area Simulation Capability of the LPJ-WHyMe Model in Northeast China
Abstract
:1. Introduction
2. Methods
2.1. Study Area
2.2. Model Description and Data
2.2.1. LPJ-WHyMeModel
2.2.2. Fire Module Glob-FIRM in the LPJ-WHyMeModel
2.2.3. Data
2.3. Model Optimization
2.4. Experimental Design
3. Results
3.1. Burned Area
3.1.1. Calibration Period
3.1.2. Validation Period
3.1.3. The Time Series Correlation Coefficient
3.1.4. Case Analysis
3.2. Parameter Sensitivity Analysis
3.2.1. Calibration Period
3.2.2. Validation Period
3.3. Soil Moistureand Total Aboveground Litter
4. Discussion
4.1. Analysis of the Mechanism to Improve Fire Simulation Ability
4.2. Limitations of the Research
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Niu, R.; Zhai, P. Study on forest fire danger over Northern China during the recent 50 years. Clim. Chang. 2012, 111, 723–736. [Google Scholar] [CrossRef]
- Luo, X.; He, H.S.; Liang, Y.; Wang, W.J.; Wu, Z.W.; Fraser, J.S. Spatial simulation of the effect of fire and harvest on aboveground tree biomass in boreal forests of Northeast China. Ann. For. Sci. 2014, 29, 1187–1200. [Google Scholar] [CrossRef]
- Zhang, Y.; Biswas, A. The Effects of Forest Fire on Soil Organic Matter and Nutrients in Boreal Forests of North America: A Review. Adapt. Soil Manag. Theory Pract. 2017, 465–476. [Google Scholar] [CrossRef]
- Thonicke, K.; Venevsky, S.; Sitch, S.; Cramer, W. The role of fire disturbance for global vegetation dynamics: Coupling fire into a Dynamic Global Vegetation Model. Glob. Ecol. Biogeogr. 2001, 10, 661–677. [Google Scholar] [CrossRef]
- Chertov, O.G.; Komarov, A.S.; Gryazkin, A.V.; Smirnov, A.P.; Bhatti, D.S. Simulation modeling of the impact of forest fire on the carbon pool in coniferous forests of European Russia and Central Canada. Contemp. Probl. Ecol. 2013, 6, 727–733. [Google Scholar] [CrossRef]
- Liu, Q.; Shan, Y.; Shu, L.; Sun, P.; Du, S. Spatial and temporal distribution of forest fire frequency and forest area burnt in Jilin Province, Northeast China. J. For. Res. 2018, 29, 1233–1239. [Google Scholar] [CrossRef]
- Li, X.; He, H.S.; Wu, Z.; Liang, Y.; Schneiderman, J.E. Comparing effects of climate warming, fire, and timber harvesting on a boreal forest landscape in northeastern China. PLoS ONE 2013, 8, e59747. [Google Scholar] [CrossRef]
- Schumacher, S.; Bugmann, H. The relative importance of climatic effects, wildfires and management for future forest landscape dynamics in the Swiss Alps. Glob. Chang. Biol. 2006, 12, 1435–1450. [Google Scholar] [CrossRef]
- Drobyshev, I.; Granström, A.; Linderholm, H.W.; Hellberg, E.; Bergeron, Y.; Niklasson, M.; McGlone, M. Multi-century reconstruction of fire activity in Northern European boreal forest suggests differences in regional fire regimes and their sensitivity to climate. J. Ecol. 2014, 102, 738–748. [Google Scholar] [CrossRef] [Green Version]
- Randerson, J.T.; Liu, H.; Flanner, M.G.; Chambers, S.D.; Jin, Y.; Hess, P.G. The impact of boreal forest fire on climate warming. Science 2006, 314, 1130–1132. [Google Scholar] [CrossRef]
- Giglio, L.; Randerson, J.T.; van der Werf, G.R.; Kasibhatla, P.S.; Collatz, G.J.; Morton, D.C.; DeFries, R.S. Assessing variability and long-term trends in burned area by merging multiple satellite fire products. Biogeosciences 2010, 7, 1171–1186. [Google Scholar] [CrossRef] [Green Version]
- Bowman, D.M.J.S.; Balch, J.K.; Artaxo, P.; Bond, W.J.; Carlson, J.M.; Cochrane, M.A.; D’Antonio, C.M.; DeFries, R.S.; Doyle, J.C.; Harrison, S.P.; et al. Fire in the Earth System. Science 2009, 324, 480–484. [Google Scholar] [CrossRef] [PubMed]
- Aragão, L.E.; Malhi, Y.; Barbier, N.; Lima, A.; Shimabukuro, Y.; Anderson, L.; Saatchi, S. Interactions between rainfall, deforestation and fires during recent years in the Brazilian Amazonia. Philos Trans. R Soc. B Biol. Sci. 2008, 363, 1779–1785. [Google Scholar] [CrossRef] [PubMed]
- Nowacki, G.J.; Abrams, M.D. The demise of fire and “mesophication” of forests in the eastern United States. Biogeosciences 2008, 58, 123–138. [Google Scholar] [CrossRef]
- Page, S.; Siegert, F.; Rieley, J.O.; Boehm, H.D.V.; Jaya, A.; Limin, S. The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature 2002, 420, 61–65. [Google Scholar] [CrossRef]
- Flannigan, M.; Stocks, B.; Turetsky, M.; Wotton, M. Impacts of climate change on fire activity and fire management in the circumboreal forest. Glob. Chang. Biol. 2009, 15, 549–560. [Google Scholar] [CrossRef]
- Hurteau, M.D.; Brooks, M.L. Short- and Long-term Effects of Fire on Carbon in US Dry Temperate Forest Systems. BioScience 2011, 61, 139–146. [Google Scholar] [CrossRef]
- Bond, W.J.; Keeley, J.E. Fire as a global ‘herbivore’: The ecology and evolution of flammable ecosystems. Trends Ecol. Evol. 2005, 20, 387–394. [Google Scholar] [CrossRef]
- Genet, H.; McGuire, A.D.; Barrett, K.; Breen, A.; Euskirchen, E.S.; Johnstone, J.F.; Kasischke, E.S.; Melvin, A.M.; Bennett, A.; Mack, M.C.; et al. Modeling the effects of fire severity and climate warming on active layer thickness and soil carbon storage of black spruce forests across the landscape in interior Alaska. Environ. Res. Lett. 2013, 8. [Google Scholar] [CrossRef]
- Kasischke, E.S.; Hoy, E.E. Controls on carbon consumption during Alaskan wildland fires. Glob. Chang. Biol. 2012, 18, 685–699. [Google Scholar] [CrossRef]
- Yuan, F.; Yi, S.; McGuire, A.D.; Johnson, K.D.; Liang, J.; Harden, J.; Kasischke, E.S.; Kurz, W. Assessment of historical boreal forest C dynamics in Yukon River basin: Relative roles of warming and fire regime change. Ecol. Appl. 2012, 22, 2091–2109. [Google Scholar] [CrossRef] [PubMed]
- Balshi, M.S.; McGuire, A.D.; Duffy, P.; Flannigan, M.; Kicklighter, D.W.; Melillo, J. Vulnerability of carbon storage in North American boreal forests to wildfires during the 21st century. Glob. Chang. Biol. 2009, 15, 1491–1510. [Google Scholar] [CrossRef]
- Kasischke, E.S.; Turetsky, M.R. Correction to “Recent changes in the fire regime across the North American boreal region-Spatial and temporal patterns of burning across Canada and Alaska”. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Yue, X.; Mickley, L.J.; Logan, J.A.; Kaplan, J.O. Ensemble projections of wildfire activity and carbonaceous aerosol concentrations over the western United States in the mid−21st century. Atmos Environ. 2013, 77, 767–780. [Google Scholar] [CrossRef]
- Migliavacca, M.; Dosio, A.; Kloster, S.; Ward, D.S.; Camia, A.; Houborg, R.; Houston Durrant, T.; Khabarov, N.; Krasovskii, A.A.; San Miguel-Ayanz, J.; et al. Modeling burned area in Europe with the Community Land Model. J. Geophys. Res. Biogeosci. 2013, 118, 265–279. [Google Scholar] [CrossRef] [Green Version]
- Prentice, I.C.; Kelley, D.I.; Foster, P.N.; Friedlingstein, P.; Harrison, S.P.; Bartlein, P.J. Modeling fire and the terrestrial carbon balance. Glob. Biogeochem. Cycles 2011, 25. [Google Scholar] [CrossRef] [Green Version]
- Thonicke, K.; Spessa, A.; Prentice, I.C.; Harrison, S.P.; Dong, L.; Carmona-Moreno, C. The influence of vegetation, fire spread and fire behaviour on biomass burning and trace gas emissions: Results from a process-based model. Biogeosciences 2010, 7, 1991–2011. [Google Scholar] [CrossRef]
- Antonarakis, A.S.; Munger, J.W.; Moorcroft, P.R. Imaging spectroscopy- and lidar-derived estimates of canopy composition and structure to improve predictions of forest carbon fluxes and ecosystem dynamics. Geophys. Res. Lett. 2014, 41, 2535–2542. [Google Scholar] [CrossRef]
- Shugart, H.H.; Saatchi, S.; Hall, F.G. Importance of structure and its measurement in quantifying function of forest ecosystems. J. Geophys. Res. Biogeosci. 2010, 115. [Google Scholar] [CrossRef]
- Carvalhais, N.; Reichstein, M.; Ciais, P.; Collatz, G.J.; Mahecha, M.D.; Montagnani, L.; Papale, D.; Rambal, S.; Seixas, J. Identification of vegetation and soil carbon pools out of equilibrium in a process model via eddy covariance and biometric constraints. Glob. Chang. Biol. 2010, 16, 2813–2829. [Google Scholar] [CrossRef]
- Zhao, Y.; Ciais, P.; Peylin, P.; Viovy, N.; Longdoz, B.; Bonnefond, J.M.; Rambal, S.; Klumpp, K.; Olioso, A.; Cellier, P.; et al. How errors on meteorological variables impact simulated ecosystem fluxes: A case study for six French sites. Biogeosciences 2012, 9, 2537–2564. [Google Scholar] [CrossRef]
- Pappas, C.; Fatichi, S.; Rimkus, S.; Burlando, P.; Huber, M.O. The role of local-scale heterogeneities in terrestrial ecosystem modeling. J. Geophys. Res. Biogeosci. 2015, 120, 341–360. [Google Scholar] [CrossRef] [Green Version]
- Potter, K.A.; Arthur Woods, H.; Pincebourde, S. Microclimatic challenges in global change biology. Glob. Chang. Biol 2013, 19, 2932–2939. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.C.; Pejam, M.R.; Chan, E.; Wofsy, S.C.; Gottlieb, E.W.; Margolis, H.A.; McCaughey, J.H. Attributing uncertainties in simulated biospheric carbon fluxes to different error sources. Glob. Biogeochem. Cycles 2011, 25. [Google Scholar] [CrossRef]
- LeBauer, D.S.; Wang, D.; Richter, K.T.; Davidson, C.C.; Dietze, M.C. Facilitating feedbacks between field measurements and ecosystem models. Ecol. Monographs 2013, 83, 133–154. [Google Scholar] [CrossRef]
- Luo, Y.; Weng, E.; Wu, X.; Gao, C.; Zhou, X.; Zhang, L. Parameter identifiability, constraint, and equifinality in data assimilation with ecosystem models. Ecol. Appl. 2009, 19, 571–574. [Google Scholar] [CrossRef]
- Sun, G.D.; Mu, M. A new approach to identify the sensitivity and importance of physical parameters combination within numerical models using the Lund–Potsdam–Jena (LPJ) model as an example. Theor. Appl. Climatol. 2017, 128, 587–601. [Google Scholar] [CrossRef]
- Li, F.; Zeng, X.D.; Levis, S. A process-based fire parameterization of intermediate complexity in a Dynamic Global Vegetation Model. Biogeosciences 2012, 9, 2761–2780. [Google Scholar] [CrossRef] [Green Version]
- Quillet, A.; Peng, C.H.; Garneau, M. Toward dynamic global vegetation models for simulating vegetation-climate interactions and feedbacks: Recent developments, limitations, and future challenges. Environ. Rev. 2010, 18, 333–353. [Google Scholar] [CrossRef]
- Kelley, D.I.; Harrison, S.P.; Prentice, I.C. Improved simulation of fire–vegetation interactions in the Land surface Processes and eXchanges dynamic global vegetation model (LPX-Mv1). Geosci. Model. Dev. 2014, 7, 2411–2433. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, Q.; Wang, H.; Wang, W.; Han, S. Shelterbelt Poplar Forests Induced Soil Changes in Deep Soil Profiles and Climates Contributed Their Inter-site Variations in Dryland Regions, Northeastern China. Front. Plant. Sci. 2019, 10, 220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Z.; Yang, J.; Chang, Y.; Weisberg, P.J.; He, H.S. Spatial patterns and drivers of fire occurrence and its future trend under climate change in a boreal forest of Northeast China. Glob. Chang. Biol. 2012, 18, 2041–2056. [Google Scholar] [CrossRef]
- Cai, W.; Yang, J.; Liu, Z.; Hu, Y.; Weisberg, P.J. Post-fire tree recruitment of a boreal larch forest in Northeast China. For. Ecol. Manag. 2013, 307, 20–29. [Google Scholar] [CrossRef]
- Yan, G.; Xing, Y.; Wang, J.; Li, Z.; Wang, L.; Wang, Q.; Xu, L.; Zhang, Z.; Zhang, J.; Dong, X.; et al. Sequestration of atmospheric CO2 in boreal forest carbon pools in northeastern China: Effects of nitrogen deposition. Agricult. For. Meteorol. 2018, 248, 70–81. [Google Scholar] [CrossRef]
- Johnstone, J.; Hollingsworth, T.; Chapin, F.; Mack, M. Changes in fire regime break the legacy lock on successional trajectories in Alaskan boreal forest. Glob. Chang. Biol. 2010, 16, 1281–1295. [Google Scholar] [CrossRef]
- Bond-Lamberty, B.; Peckham, S.; Ahl, D.; Gower, S. Fire as the dominant driver of central Canadian boreal forest carbon balance. Nature 2007, 450, 89–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, F.; Wang, G.; Innes, J.L.; Ma, X.; Sun, L.; Hu, H. Gamma generalized linear model to investigate the effects of climate variables on the area burned by forest fire in northeast China. J. For. Res. 2015, 26, 545–555. [Google Scholar] [CrossRef]
- Liu, Z.; He, H.S.; Yang, J.; Collins, B. Emulating natural fire effects using harvesting in an eastern boreal forest landscape of northeast China. J. Veg. Sci. 2012, 23, 782–795. [Google Scholar] [CrossRef]
- Luo, X.; He, H.S.; Liang, Y.; Wu, Z. Evaluating simulated effects of succession, fire, and harvest for LANDIS PRO forest landscape model. Ecol. Model. 2015, 297, 1–10. [Google Scholar] [CrossRef]
- Wang, M. Carbon Flux Simulation and Forest Fire Impact Analysis of Ecosystem in Northeast China (in Chinese). Ph.D. Thesis, Fuzhou University, Fuzhou, China, 2016. [Google Scholar]
- Randerson, J.T.; van der Werf, G.R.; Giglio, L.; Collatz, G.J.; Kasibhatla, P.S. Global Fire Emissions Database, Version 4.1 (GFEDv4); ORNL DAAC: Oak Ridge, TN, USA, 2017. [Google Scholar] [CrossRef]
- Central Weather Bureau. Climate Atlas of the People’s Republic of China; Meteorological Publishing House: Beijing, China, 2002; pp. 6–7. [Google Scholar]
- Wang, C. Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests. For. Ecol. Manag. 2006, 222, 9–16. [Google Scholar] [CrossRef]
- Wang, Z.-P.; Han, S.-J.; Li, H.-L.; Deng, F.-D.; Zheng, Y.-H.; Liu, H.-F.; Han, X.-G. Methane Production Explained Largely by Water Content in the Heartwood of Living Trees in Upland Forests. J. Geophys. Res. Biogeosci. 2017, 122, 2479–2489. [Google Scholar] [CrossRef]
- Han, S.J.; Wang, Q.G. Response of boreal forest ecosystem to global climate change: A review (in Chinese). J. Beijing For. Univ. 2016, 38, 1–20. [Google Scholar] [CrossRef]
- Tian, X.R.; Shu, L.F.; Wang, M.Y. Influences of fire regime changes on the forest ecosystem in Northeast China. For. Fire Prev. 2005, 21–25. [Google Scholar] [CrossRef]
- Li, M.z.; Wang, B.; Fan, W.Y.; Zhao, D.D. Simulated study on Net Primary Productivity of Northeast forest region and the impact of forest fire disturbance in Daxing’an Mountains (in Chinese). Chin. J. Plant Ecol. 2015, 39, 322–332. [Google Scholar] [CrossRef]
- Tan, X.L.; Zhang, Z.H.; Li, Z.Y.; Yi, H.R. Research on Northeast forest fire recognition method based on ATSR data (in Chinese). Remote Sens. Technol. Appl. 2007, 22, 479–484. [Google Scholar]
- Wania, R.; Ross, I.; Prentice, I.C. Integrating peatlands and permafrost into a dynamic global vegetation model: 1. Evaluation and sensitivity of physical land surface processes. Glob. Biogeochem. Cycles 2009, 23. Available online: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2008GB003412 (accessed on 7 May 2019). [CrossRef] [Green Version]
- Wania, R.; Ross, I.; Prentice, I.C. Integrating peatlands and permafrost into a dynamic global vegetation model: 2. Evaluation and sensitivity of vegetation and carbon cycle processes. Glob. Biogeochem. Cycles 2009, 23. Available online: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2008GB003413 (accessed on 7 May 2019). [CrossRef] [Green Version]
- Wania, R.; Ross, I.; Prentice, I.C. Implementation and evaluation of a new methane model within a dynamic global vegetation model: LPJ-WHyMe v1.3.1. Geosci. Model. Dev. 2010, 3, 565–584. [Google Scholar] [CrossRef] [Green Version]
- Wania, R. Modelling Northern Peatland Land Surface Processes, Vegetation Dynamics and Methane Emissions. Ph.D. Thesis, University of Bristol, Bristol, UK, 2007. [Google Scholar]
- Gerten, D.; Schaphoff, S.; Haberlandt, U.; Lucht, W.; Sitch, S. Terrestrial vegetation and water balance—Hydrological evaluation of a dynamic global vegetation model. J. Hydrol. 2004, 286, 249–270. [Google Scholar] [CrossRef]
- Sitch, S.; Smith, B.; Prentice, I.C.; Arenth, A.; Bondeau, A.; Cramer, W. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic vegetation model. Glob. Chang. Biol. 2003, 9, 161–185. [Google Scholar] [CrossRef]
- Werner, C.; Butterbach-Bahl, K.; Haas, E.; Hickler, T.; Kiese, R. A global inventory of N2O emissions from tropical rainforest soils using a detailed biogeochemical model. Glob. Biogeochem. Cycles 2007, 21. [Google Scholar] [CrossRef]
- Mitchell, T.D.; Jones, P.D. An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int. J. Climatol. 2005, 25, 693–712. [Google Scholar] [CrossRef]
- Kicklighter, D.W.; Bruno, M.; Donges, S.; Esser, G.; Heimann, M.; Helfrich, J. A first-order analysis of the potential role of CO2 fertilization to affect the global carbon budget: A comparison of four terrestrial biosphere models. Tellus Ser. B-chem. Phys. Meteorol. 1999, 51, 343–366. [Google Scholar] [CrossRef]
- Zobler, L. A world soil file for global climate modeling. In NASA Technical Memorandum, 87802. NASA, Washington, D.C; National Aeronautics and Space Administration: Washington, DC, USA, 1986. [Google Scholar]
- Giglio, L.; Randerson, J.T.; van der Werf, G.R. Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4). J. Geophys. Res. Biogeosci. 2013, 118, 317–328. [Google Scholar] [CrossRef] [Green Version]
- Van der Werf, G.R.; Randerson, J.T.; Giglio, L.; van Leeuwen, T.T.; Chen, Y.; Rogers, B.M.; Mu, M.; van Marle, M.J.E.; Morton, D.C.; Collatz, G.J.; et al. Global fire emissions estimates during 1997–2016. Earth Syst. Sci. Data 2017, 9, 697–720. [Google Scholar] [CrossRef]
- Gupta, H.V.; Sorooshian, S.; Yapo, P.O. Toward improved calibration of hydrologic models: Multiple and noncommensurable measures of information. Water Resour. Res. 1998, 34, 751–763. [Google Scholar] [CrossRef]
- Demaria, E.M.; Nijssen, B.; Wagener, T. Monte Carlo sensitivity analysis of land surface parameters using the Variable Infiltration Capacity model. J. Geophys. Res. 2007, 112. [Google Scholar] [CrossRef]
- Gupta, H.V.; Bastidas, L.A.; Sorooshian, S.; Shuttleworth, W.J.; Yang, Z.L. Parameter estimation of a land surface scheme using multicriteria methods. J. Geophys. Res. Atmos. 1999, 104, 19491–19503. [Google Scholar] [CrossRef] [Green Version]
- Romanowicz, R.J.; Osuch, M.; Grabowiecka, M. On the choice of calibration periods and objective functions: A practical guide to model parameter identification. Acta Geophys. 2013, 61, 1477–1503. [Google Scholar] [CrossRef]
- Rosero, E.; Gulden, L.E.; Yang, Z.-L.; De Goncalves, L.G.; Niu, G.-Y.; Kaheil, Y.H. Ensemble Evaluation of Hydrologically Enhanced Noah-LSM: Partitioning of the Water Balance in High-Resolution Simulations over the Little Washita River Experimental Watershed. J. Hydrometeorol. 2011, 12, 45–64. [Google Scholar] [CrossRef] [Green Version]
- Storn, R.; Price, K. Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Opt. 1997, 11, 341–359. [Google Scholar] [CrossRef]
- Li, G.; Liu, M. The summary of differential evolution algorithm and its improvements. Adv. Comput. Theory Eng. 2010, 3, 153–156. [Google Scholar]
- Mallipeddi, R.; Suganthan, P.N.; Pan, Q.K.; Tasgetiren, M.F. Differential evolution algorithm with ensemble of parameters and mutation strategies. Appl. Soft Comput. 2011, 11, 1679–1696. [Google Scholar] [CrossRef]
- Neri, F.; Tirronen, V. Recent advances in differential evolution: A survey and experimental analysis. Artif. Intell. Rev. 2009, 33, 61–106. [Google Scholar] [CrossRef]
- Vasan, A.; Raju, K.S. Application of differential evolution for irrigation planning: An Indian case study. Water Res. Manag. 2007, 21, 1393–1407. [Google Scholar] [CrossRef]
- Yuan, X.; Zhang, Y.; Wang, L.; Yuan, Y. An enhanced differential evolution algorithm for daily optimal hydro generation scheduling. Comput. Math. Appl. 2008, 55, 2458–2468. [Google Scholar] [CrossRef] [Green Version]
- Chiou, J.-P.; Chang, C.-F.; Su, C.-T. Ant direction hybrid differential evolution for solving large capacitor placement problems. IEEE Trans. Power Syst. 2004, 19, 1794–1800. [Google Scholar] [CrossRef]
- Su, C.-T.; Lee, C.-S. Network reconfiguration of distribution systems using improved mixed-integer hybrid differential evolution. IEEE Trans. Power Deliv. 2003, 18, 1022–1027. [Google Scholar] [CrossRef]
- Wang, F.S.; Jang, H.J. Parameter Estimation of a Bioreaction Model by Hybrid Differential Evolution; IEEE Neural Network Council: La Jolla, CA, USA, 2000. [Google Scholar]
- Piotrowski, A.P.; Napiorkowski, J.J. Product-units neural networks for catchment runoff forecasting. Adv. Water Res. 2012, 49, 97–113. [Google Scholar] [CrossRef]
- Qin, A.K.; Huang, V.L.; Suganthan, P.N. Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans. Evolut. Comput. 2009, 13, 398–417. [Google Scholar] [CrossRef]
- Sun, G.D.; Mu, M. Responses of soil carbon variation to climate variability in China using the LPJ model. Theor. Appl. Climatol. 2012, 110, 143–153. [Google Scholar] [CrossRef]
- Sun, G.D.; Mu, M. Understanding variations and seasonal characteristics of net primary production under two types of climate change scenarios in China using the LPJ model. Clim. Chang. 2013, 120, 755–769. [Google Scholar] [CrossRef]
- Sun, G.D.; Mu, M. Inducing unstable grassland equilibrium states due to nonlinear optimal patterns of initial and parameter perturbations: Theoretical models. Adv. Atmos. Sci. 2012, 29, 79–90. [Google Scholar] [CrossRef]
- Sun, G.D.; Mu, M. A preliminary application of the differential evolution algorithm to calculate the CNOP. Atmos. Ocean. Sci. Lett. 2009, 2, 381–385. [Google Scholar]
- Sun, Q.Q.; Liu, J.M.; Liang, H. Study on regional prediction model of soil moisture in Northeast China. J. Nat. Res. 2014, 29, 1065–1075. [Google Scholar] [CrossRef]
- Li, M.; Ma, Z.; Niu, G. Simulation of Temporal and Spatial Characteristics of Soil Moisture Change in China (in Chinese). Chin. Sci. Bull. 2011, 56, 1288–1300. [Google Scholar]
- Arora, V.K.; Boer, G.J. Fire as an interactive component of dynamic vegetation models. J. Geophys. Res. Biogeosci. 2005, 110. [Google Scholar] [CrossRef] [Green Version]
- Bistinas, I.; Harrison, S.P.; Prentice, I.C.; Pereira, J.M.C. Causal relationships versus emergent patterns in the global controls of fire frequency. Biogeosciences 2014, 11, 5087–5101. [Google Scholar] [CrossRef] [Green Version]
- Kucharik, C.J.; Foley, J.A.; Delire, C.; Fisher, V.A.; Coe, M.T.; Lenters, J.D.; Young-Molling, C.; Ramankutty, N.; Norman, J.M.; Gower, S.T. Testing the performance of a dynamic global ecosystem model: Water balance, carbon balance, and vegetation structure. Glob. Biogeochem. Cycles 2000, 14, 795–825. [Google Scholar] [CrossRef]
- North, M.P.; Stephens, S.L.; Collins, B.M.; Agee, J.K.; Aplet, G.; Franklin, J.F.; Fule, P.Z. Reform forest fire management. Science 2019, 349, 1280–1281. [Google Scholar] [CrossRef]
- Mu, M.; Duan, W.S.; Wang, Q.; Zhang, R. An extension of conditional nonlinearoptimal perturbation approach and its applications. Nonlinear Proc. Geophys. 2010, 17, 211–220. [Google Scholar] [CrossRef]
Number | Parameter | Standard | Minimum | Maximum | Description |
---|---|---|---|---|---|
1 | 0.7 | 0.2 | 0.996 | Co-limitation shape parameter | |
2 | 0.5 | 0.3 | 0.7 | Fraction of PAR assimilated at ecosystem level relative to leaf level | |
3 | 0.7 | 0.6 | 0.8 | Optimal ci = ca for C3 plants (all PFTs except TrH) | |
4 | 0.08 | 0.02 | 0.125 | Intrinsic quantum efficiency of CO2 uptake in C3 plants | |
5 | 0.015 | 0.01 | 0.021 | Leaf respiration as a fraction of Rubisco capacity in C3 plants | |
6 | 1.2 | 1.1 | 1.3 | q10 for temperature-sensitive parameter ko | |
7 | 2.1 | 1.9 | 2.3 | q10 for temperature-sensitive parameter kc | |
8 | 0.57 | 0.47 | 0.67 | q10 for temperature-sensitive parameter tau | |
9 | 0.25 | 0.15 | 0.4 | Growth respiration per unit NPP | |
10 | 3.26 | 2.5 | 18.5 | Maximum canopy conductance analog [mm·day−1] | |
11 | 1.391 | 1.1 | 1.5 | Evapotranspiration parameter | |
12 | 100 | 75 | 125 | Crown area = kallom1 * height ** krp | |
13 | 40 | 30 | 50 | Height = kallom2 * diameter ** kallom3 | |
14 | 0.67 | 0.5 | 0.8 | Height = kallom2 * diameter ** kallom3 | |
15 | 6000 | 2000 | 8000 | Leaf-to-sapwood area ratio | |
16 | 1.5 | 1.37 | 1.6 | Crown area = kallom1 * height ** krp | |
17 | 0.01 | 0.005 | 0.1 | Asymptotic maximum mortality rate [year−1] | |
18 | 0.4 | 0.2 | 0.5 | Growth efficiency mortality scalar | |
19 | 0.24 | 0.05 | 0.48 | Maximum sapling establishment rate [m−2·year−1] | |
20 | 7.15 | 6.85 | 7.45 | Leaf N concentration (mg·g−1) not involved in photosynthesis | |
21 | 200 | 180 | 220 | Specific wood density [kg C·m−3] | |
22 | 0.35 | 0.19 | 0.81 | Litter turnover time at 10 °C [year] | |
23 | 1.32 | 1.12 | 1.52 | Priestley-Taylor coefficient | |
24 | 0.17 | 0.15 | 0.19 | Global average short-wave albedo | |
25 | 2.00 | 1.80 | 2.20 | variables in percolation equation | |
26 | 0.9 | 0.6 | 1.0 | Fraction of active fraction of roots uptaking water from top soil layer | |
27 | 0.02 | 0.005 | 0.08 | LAI parameter, interception storage parameter | |
28 | 0.3 | 0.15 | 0.4 | Flammability threshold |
Parameter Sensitivity Analysis | Parameter Uncertainty Range |
---|---|
25% parameter uncertainty range | (standard − 0.25e1, standard + 0.25e2) |
50% parameter uncertainty range | (standard − 0.5e1, standard + 0.5e2) |
100% parameter uncertainty range | (standard − e1, standard + e2) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yue, D.; Zhang, J.; Sun, G.; Han, S. Calibration and Assessment of Burned Area Simulation Capability of the LPJ-WHyMe Model in Northeast China. Forests 2019, 10, 992. https://doi.org/10.3390/f10110992
Yue D, Zhang J, Sun G, Han S. Calibration and Assessment of Burned Area Simulation Capability of the LPJ-WHyMe Model in Northeast China. Forests. 2019; 10(11):992. https://doi.org/10.3390/f10110992
Chicago/Turabian StyleYue, Dandan, Junhui Zhang, Guodong Sun, and Shijie Han. 2019. "Calibration and Assessment of Burned Area Simulation Capability of the LPJ-WHyMe Model in Northeast China" Forests 10, no. 11: 992. https://doi.org/10.3390/f10110992
APA StyleYue, D., Zhang, J., Sun, G., & Han, S. (2019). Calibration and Assessment of Burned Area Simulation Capability of the LPJ-WHyMe Model in Northeast China. Forests, 10(11), 992. https://doi.org/10.3390/f10110992