The Application of Time Series Decomposition for the Identification and Analysis of Fluctuations in Timber Supply and Price: A Case Study from Poland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Calculations
3. Results
3.1. Timber Price Fluctuations
3.2. Fluctuations in Timber Supply
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lundholm, A.; Corrigan, E.; Nieuwenhuis, M. Implementing Climate Change and Associated Future Timber Price Trends in a Decision Support System Designed for Irish Forest Management and Applied to Ireland’s Western Peatland Forests. Forests 2019, 10, 270. [Google Scholar] [CrossRef]
- Hetemäki, L.; Hänninen, R.; Toppinen, A. Short-Term Forecasting Models for the Finnish Forest Sector: Lumber Exports and Sawlog Demand. For. Sci. 2004, 50, 461–472. [Google Scholar]
- Hetemäki, L.; Mikkola, J. Forecasting Germany’s Printing and Writing Paper Imports. For. Sci. 2005, 51, 483–497. [Google Scholar]
- Tzanova, P. Time Series Analysis for Short-Term Forest Sector Market Forecasting. Austrian J. For. Sci. 2017, 134, 2005–2230. [Google Scholar]
- Hlavackova, P.; Brezina, D.; Sujova, A. The Price Formation of Raw Wood in the Czech Republic and a Comparison with the Neighbor States. Procedia Econ. Financ. 2015, 26, 389–395. [Google Scholar] [CrossRef] [Green Version]
- Kostadinov, F.; Holm, S.; Steubing, B.; Thees, O.; Lemm, R. Simulation of a Swiss wood fuel and rundwood market: An expolorative study in agent-based modeling. For. Policy Econ. 2014, 38, 105–118. [Google Scholar] [CrossRef]
- Kożuch, A.; Adamowicz, K. Wpływ kosztów realizacji pozaprodukcyjnych funkcji lasu na sytuację ekonomiczną nadleśnictw Regionalnej Dyrekcji Lasów Państwowych w Krakowie. Sylwan 2016, 160, 1010–1019. [Google Scholar] [CrossRef]
- Niemelä, J.; Young, J.; Alard, D.; Askasibar, M.; Henle, K.; Johnson, R.; Kurttila, M.; Larsson, T.-B.; Matouch, S.; Nowicki, P.; et al. Identifying, managing and monitoring conflicts between forest biodiversity conservation and other human interests in Europe. For. Policy Con. 2005, 7, 877–890. [Google Scholar] [CrossRef]
- Alberdi, I.; Michalak, R.; Fischer, C.; Gasparini, P.; Brändli, U.-B.; Tomter, S.M.; Kuliesis, A.; Snorrason, A.; Redmond, J.; Hernández, L.; et al. Towards harmonized assessment of European forest availability for wood supply in Europe. For. Policy Econ. 2016, 70, 20–29. [Google Scholar] [CrossRef] [Green Version]
- Adamowicz, K. Cenowa elastyczność popytu na drewno na pierwotnym lokalnym rynku drzewnym w Polsce. Sylwan 2010, 154, 130–138. [Google Scholar]
- Gejdoš, M.; Danihelová, Z. Valuation and Timber Market in the Slovak Republic. Procedia Econ. Financ. 2015, 34, 697–703. [Google Scholar] [CrossRef]
- Wysocka-Fiorek, E.; Lachowicz, H. Changes in prices, volume and value of wood raw material sold by the State Forests. Sylwan 2018, 162, 12–21. [Google Scholar]
- Malinen, J.; Kilpeläinen, H. Price systems for standing sales of industrial roudwood in Finland. Balt. For. 2013, 19, 307–315. [Google Scholar]
- Malinen, J.; Haring, M.; Kilpeläinen, H.; Verkasalo, E. Comparison of alternative roundwood pricing systems—A simulation approach. Silva Fenn. 2015, 49. [Google Scholar] [CrossRef]
- Directorate-General of State Forests. Forests in Poland; State Forest Information Center: Warszawa, Poland, 2018. [Google Scholar]
- Directorate-General of State Forests. The State Forests in Figures 2018; State Forest Information Center: Warszawa, Poland, 2018. [Google Scholar]
- Zarządzenie Nr 51 Dyrektora Generalnego Lasów Państwowych z Dnia 16 Sierpnia 2005 r. Zmieniające Zarządzenie Nr 91 Dyrektora Generalnego Lasów Państwowych, z Dnia 30 Listopada 2001 r, Znak PA-80-121/2001, w Sprawie Prowadzenia Sprzedaży Drewna w Państwowym Gospodarstwie Leśnym Lasy Państwowe. (OM-906-1-107/05); State Forest Information Center: Warszawa, Poland, 2005.
- Zarządzenie nr 46 Dyrektora Generalnegp Lasów Państwowych z Dnia 24 Października 2016r. w Sprawie Sprzedaży Drewna Prowadzonej Przez Państwowe Gospodarstwo Lesne Lasy Państwowe. (ZM.800.2.2016); State Forest Information Center: Warszawa, Poland, 2016.
- Adamowicz, K. Ocena wpływu zmian gospodarczych na ilościowe zmiany podaży surowca drzewnego. Zarządzanie Ochr. Przyr. Lasach 2011, 5, 189–200. [Google Scholar]
- Leskinen, P.; Kangas, J. Modelling Future Timber Price Development by Using Expert Judgments and Time Series Analysis. Silva Fenn. 2001, 35, 93–102. [Google Scholar] [CrossRef]
- Szramka, H.; Bieniaszewski, T.; Auguścik, Ł.; Bobek, J.; Adamowicz, K. Wpływ wad drewna wielkowymiarowego na przychody z jego sprzedaży. Sylwan 2017, 161, 238–246. [Google Scholar]
- Suchodolski, P.; Idzik, M. Identyfikacja i ocena zmienności cen drewna w nadleśnictwie Płock. Wiadomości Stat. 2018, 11, 41–55. [Google Scholar]
- Borzykowski, N. A supply-demand modeling of the Swiss roundwood market: Actors responsiveness and CO2 implications. For. Policy Econ. 2019, 102, 100–113. [Google Scholar] [CrossRef]
- Holm, S.; Hilty, L.M.; Lemm, R.; Thees, O. Empirical validation of an agent-based model of wood markets in Switzerland. PLoS ONE 2018, 13, e0190605. [Google Scholar] [CrossRef]
- Knauf, M. An Analysis of Wood Market Balance Modeling in Germany. For. Policy Con. 2015, 50, 319–326. [Google Scholar] [CrossRef]
- Koskela, E.; Ollikainen, M. A game-theoretic model of timber prices with capital stock: An empirical application to the Finnish pulp and paper industry. Can. J. For. Res. 1998, 28, 1481–1493. [Google Scholar] [CrossRef]
- Lachowicz, H.; Wysocka-Fijorek, E. Silver birch timber market in Poland in 2008−2012. Sylwan 2016, 160, 971–980. [Google Scholar]
- Olsson, O.; Hillring, B. Price relationships and market integration in the Swedish wood fuel market. Biomass Bioenergy 2013, 57, 78–85. [Google Scholar] [CrossRef]
- Paschalis−Jakubowicz, P.; Kulik, P.; Lachowicz, H. Obrót surowcem drzewnym najwyższych klas jakości w Polsce. Sylwan 2015, 159, 91–102. [Google Scholar]
- Prestemon, J.P.; Holmes, T.P. Timber price dynamics following a natural catastrophe. Am. J. Agric. Econ. 2000, 82, 145–160. [Google Scholar] [CrossRef]
- Zając, S. Analiza ekonometryczna i prognozowanie zjawisk i procesów rynku surowca drzewnego w Polsce. Pr. IBL Ser. A 1999, 886, 1–133. [Google Scholar]
- Penttinen, M.J. Impact of stochastic price and growth processes on optimal rotation age. Eur. J. Forest Res. 2006, 125, 335–343. [Google Scholar] [CrossRef]
- Khajuria, R.P.; Kant, S.; Laaksonen-Craig, S. Modeling of timber harvesting options using timber prices as a mean reverting process with stochastic trend. Can. J. For. Res. 2012, 42, 179–189. [Google Scholar] [CrossRef]
- Gonzalez-Gomez, M.; Bergen, V. Berücksichtigung der Nichtstationarität von Zeitreihen bei empirischen Untersuchungen des deutschen Rohholzmarktes. Allg. Forst J.-Ztg 2014, 186, 53–62. [Google Scholar]
- Kolo, H.; Tzanova, P. Forecasting the German forest products trade: A vector error correction model. JFE 2017, 26, 30–45. [Google Scholar] [CrossRef]
- Buongiorno, J. Global modelling to predict timber production and prices: The GFPM approach. Forestry 2015, 88, 291–303. [Google Scholar] [CrossRef]
- Gejdoš, M.; Lieskovský, M.; Giertliová, B.; Němec, M.; Danihelová, Z. Prices of Raw-Wood Assortments in Selected Markets of Central Europe and their Development in the Future. Bioresources 2019, 14, 2995–3011. [Google Scholar]
- Leskinen, P.; Kangas, J. Modelling and simulation of timber prices for forest planning calculations. Scand. J. For. Res. 1998, 13, 469–476. [Google Scholar] [CrossRef]
- Michinaka, T.; Kuboyama, H.; Tamura, K.; Oka, H.; Yamamoto, N. Forecasting Monthly Prices of Japanese Logs. Forests 2016, 7, 94. [Google Scholar] [CrossRef]
- Prestemon, J.P. Evaluation of U.S. southern pine stumpage market informational efficiency. Can. J. For. Res. 2003, 33, 561–572. [Google Scholar] [CrossRef]
- Zhou, M.; Buongiorno, J. Space-Time Modeling of Timber Prices. J. Agric. Resour. Econ. 2006, 31, 40–56. [Google Scholar]
- Malaty, R.; Toppinen, A.; Viitanen, J. Modelling and forecasting Finnish pine sawlog stumpage prices using alternative time-series methods. Can. J. For. Res. 2007, 37, 178–187. [Google Scholar] [CrossRef]
- Bolkesjø, T.F. Projecting pulpwood prices under different assumptions on future capacities in the pulp and paper industry. Silva Fenn. 2005, 39, 103–116. [Google Scholar] [CrossRef]
- Dahal, P.; Mehmood, S. Determinants of timber bid prices in Arkansas. For. Prod. J. 2005, 55, 89–94. [Google Scholar]
- Kallio, A. Analysing the Finnish pulpwood market under alternative hypotheses of competition. Can. J. For. Res. 2011, 31, 236–245. [Google Scholar] [CrossRef]
- Sun, C.; Zhang, D. Assessing the financial performance of forestry related investment vehicles: Capital asset pricing model vs. arbitrage pricing theory. Am. J. Agric. Econ. 2001, 83, 617–628. [Google Scholar] [CrossRef]
- Toppinen, A.; Kuuluvainen, J. Forest sector modelling in Europe—The state of the art and future research directions. For. Policy Econ. 2010, 12, 2–8. [Google Scholar] [CrossRef]
- National Bank of Poland. Exchange Rate of the Polish National Bank. Available online: https://www.nbp.pl/home.aspx?f=/statystyka/kursy.html (accessed on 6 June 2019).
- Central Statistical Office. Inflation Coeficients in Poland. Available online: https://stat.gov.pl/obszary-tematyczne/ceny-handel/wskazniki-cen/wskazniki-cen-towarow-i-uslug-konsumpcyjnych-pot-inflacja-/miesieczne-wskazniki-cen-towarow-i-uslug-konsumpcyjnych-od-1982-roku/ (accessed on 4 June 2019).
- Shiskin, J.; Young, A.H.; Musgrave, J.C. The X-11 Variant of the Census Method II Seasonal Adjustment Program; Technical paper 15; US Government Printing Office: Washington, DC, USA, 1967.
- Hodrick, R.; Prescott, E.C.; Postwar, U.S. Business Cycles: An Empirical Investigation. J. Money Credit Bank. 1997, 29, 1–16. [Google Scholar] [CrossRef]
- Ravn, M.O.; Uhlig, H. On Adjusting the Hodrick-Prescott Filter for the Frequency of Observations. Rev. Econ. Stat. 2002, 84, 371–380. [Google Scholar] [CrossRef]
- Mehrotra, S.N.; Kant, S.; Majumdar, I. Industry Cycles in the US Softwood Lumber Industry: 1985 through 2010. For. Prod. J. 2014, 64, 116–125. [Google Scholar] [CrossRef]
- Petersen, B.; Strongin, S. Why are some industries more cyclical than others? J. Bus. Econ. Stat. 1996, 14, 189–198. [Google Scholar]
- Wear, D.N.; Prestemon, J.P.; Foster, M.O. US Forest Products in the Global Economy. J. For. 2016, 114, 483–493. [Google Scholar] [CrossRef]
- Gejdoš, M.; Potkány, M. Prediction and analysis of Slovakian timber trade on global market conditions. Serb. J Manag. 2017, 12, 281–289. [Google Scholar] [CrossRef] [Green Version]
- Woodall, C.W.; Piva, R.J.; Luppold, W.G.; Skog, E.K.; Ince, J.P. An assessment of the downturn in the forest products sector in the northern region of the United States. For. Prod. J. 2011, 61, 604–613. [Google Scholar] [CrossRef]
- Parajuli, R.; Chang, S.J.; Hill, R.C. How Effective Is the United States-Canada Softwood Lumber Agreement 2006? An Econometric Study. For. Sci. 2015, 61, 1041–1049. [Google Scholar] [CrossRef]
- Kolis, K.; Hiironen, J.; Ärölä, E.; Vitikainen, A. Effects of sale-specific factors on stumpage prices in Finland. Silva Fenn. 2014, 48. [Google Scholar] [CrossRef] [Green Version]
- Toppinen, A.; Kuuluvainen, J. Structural changes in sawlog and pulpwood markets in Finland. Scand. J. Forest Res. 1997, 12, 382–389. [Google Scholar] [CrossRef]
- Solberg, B. An Econometric Analysis of Timber Supply in Eight Northwestern European Countries; EFI Technical Report No. 44; European Forest Institute: Joensuu, Finland, 2011; Available online: https://efi.int/publications-bank/econometric-analysis-timber-supply-eight-northwestern-european-countries (accessed on 10 June 2019).
- Tian, N.; Poudyal, N.C.; Augé, R.M.; Hodges, D.G.; Young, T.M. Meta-Analysis of Price Responsiveness of Timber Supply. For. Products J. 2017, 67, 152–163. [Google Scholar] [CrossRef]
- Polyakov, M.; Wear, D.N.; Huggett, R.N. Harvest Choice and Timber Supply Models for Forest Forecasting. For. Science 2010, 56, 344–355. [Google Scholar]
- Zwirglmaier, K. Seasonality of Prices—The Example of German Timber Prices. Technisce Universitat Munchen. 2010. Available online: http://www.gip ecofor.org/doc/drupal/liens_article/evenements/2010/ZWIRGLMAIER_IUFRO_Paris_Mai2010.pdf. (accessed on 15 July 2019).
- Brown, R.N.; Kilgore, M.A.; Coggins, J.S.; Blinn, C.R. The impact of timber-sale tract, policy, and administrative characteristics on state stumpage prices: An econometric analysis. For. Policy Econ. 2012, 21, 71–80. [Google Scholar] [CrossRef]
- Şen, G.; Güngör, E. Determination of the Seasonal Effect on the Auction Prices of Timbers and Prediction of Future Prices. J. Bartin Fac. For. 2018, 20, 266–277. [Google Scholar]
- Sikora, A.T. The effect of natural disasters on the timber market. For. Res. Papers 2017, 78, 277–284. [Google Scholar] [CrossRef] [Green Version]
- Kuboyama, H.; Tachibana, S. Statistical analysis on price trend of softwood roundwood. Kanto J. For. Res 2014, 65, 9–12. [Google Scholar]
- Suchomel, J.; Gejdos, M.; Ambrusova, L.; Sulek, R. Analysis of price changes of selected roundwood assortments in some Central Europe countries. J. For. Sci. 2012, 58, 483–491. [Google Scholar] [CrossRef] [Green Version]
- Kożuch, A.; Banaś, J.; Zięba, S.; Adamowicz, K. Analysis of the supply and price of beech wood in southern Poland. Acta Sci. Pol. Silv. 2016, 87–96. [Google Scholar] [CrossRef]
Type of Timber | Sawtimber | Pulpwood | Total (1) | |||
---|---|---|---|---|---|---|
m3 103/quarter | €/m3 | m3 103/quarter | €/m3 | m3 106 | % | |
Pine | 2218.1 ± 387.5 (2) | 59.7 ± 5.7 | 1823.5 ± 430.1 | 34.2 ± 4.6 | 226.3 | 66 |
Spruce | 490.8 ± 105.6 | 63.9 ± 5.7 | 329.0 ± 114 | 33.7 ± 4.2 | 45.9 | 13 |
Birch | 102.5 ± 12.8 | 46.0 ± 4.9 | 346.5 ± 35.5 | 33.5 ± 3.4 | 25.1 | 7 |
Beech | 227.5 ± 47.3 | 51.9 ± 7.2 | 194.2 ± 38.8 | 35.1 ± 3.3 | 23.6 | 7 |
Oak | 135.4 ± 14.8 | 128.3 ± 20.6 | 148.8 ± 37.4 | 34.2 ± 2.8 | 15.9 | 5 |
Alder | 42.4 ± 9.7 | 49.3 ± 5.1 | 100.1 ± 18.1 | 29.7 ± 3.5 | 8.0 | 2 |
Assortments | Type of Timber | Price (quarters) (%) | F-Test | p-Level | |
---|---|---|---|---|---|
Maximum | Minimum | ||||
Sawtimber W0 | Pine | 101.2 (Q1) | 98.3 (Q3) | 8.5 | <0.001 |
Spruce | 105.2 (Q1) | 96.4 (Q3) | 122.1 | <0.001 | |
Oak | 102.5 (Q1) | 97.4 (Q3) | 35.6 | <0.001 | |
Beech | 101.6 (Q1) | 98.7 (Q3) | 10.0 | <0.001 | |
Birch | 101.5 (Q1) | 98.5 (Q3) | 12.2 | <0.001 | |
Alder | 102.1 (Q1) | 97.5 (Q3) | 36.2 | <0.001 | |
Pulpwood S2A | Pine | ns | 3.0 | 0.038 | |
Spruce | 101.8 (Q1) | 98.6 (Q3) | 16.5 | <0.001 | |
Oak | 103.3 (Q3) | 97.6 (Q2) | 5.7 | <0.005 | |
Beech | 101.2 (Q2) | 98.3 (Q4) | 14.4 | <0.001 | |
Birch | 101.7 (Q2) | 94.4 (Q4) | 16.6 | <0.001 | |
Alder | ns | 2.1 | 0.12 |
Horizon of Change (Number of Quarters) | Fluctuations (%) | ||
---|---|---|---|
Irregular | Cyclical | Seasonal | |
1 | 18.8 | 36.8 | 44.4 |
2 | 2.6 | 72.8 | 24.6 |
3 | 3.2 | 84.4 | 12.4 |
4 | 2.0 | 98.0 | 0.0 |
Mean | 6.7 | 73.0 | 20.3 |
9 | Type of Timber | Supply (Quarters) in (%) | F-Test | p-Level | |
---|---|---|---|---|---|
Maximum | Minimum | ||||
Sawtimber W0 | Pine | 105.8 (Q4) | 89.2 (Q1) | 15.7 | <0.001 |
Spruce | 107.8 (Q3) | 85.2 (Q1) | 95.6 | <0.001 | |
Oak | 110 (Q1) | 82.6 (Q3) | 28.0 | <0.001 | |
Beech | 114.8 (Q1) | 82.0 (Q3) | 39.4 | <0.001 | |
Birch | 112.1 (Q4) | 93.2 (Q3) | 16.3 | <0.001 | |
Alder | 121.7 (Q1) | 88.7 (Q3) | 67.1 | <0.001 | |
Pulpwood S2A | Pine | 105.9 (Q2) | 94.1 (Q1) | 2.1 | 0.11 |
Spruce | 108.1 (Q2) | 85.5 (Q1) | 41.4 | <0.001 | |
Oak | 113.3 (Q2) | 88.1 (Q3) | 48.5 | <0.001 | |
Beech | 116.9 (Q2) | 87.4 (Q4) | 72.1 | <0.0010 | |
Birch | 106.3 (Q2) | 95.5 (Q3) | 3.3 | 0.026 | |
Alder | 112.4 (Q1) | 91.5 (Q3) | 28.1 | <0.001 |
Horizon of Change (Number of Quarters) | Change (%) | ||
---|---|---|---|
Irregular | Cyclical | Seasonal | |
1 | 44 | 9 | 47 |
2 | 20 | 24 | 56 |
3 | 22 | 40 | 39 |
4 | 26 | 74 | 0 |
Mean | 28 | 36 | 36 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Banaś, J.; Kożuch, A. The Application of Time Series Decomposition for the Identification and Analysis of Fluctuations in Timber Supply and Price: A Case Study from Poland. Forests 2019, 10, 990. https://doi.org/10.3390/f10110990
Banaś J, Kożuch A. The Application of Time Series Decomposition for the Identification and Analysis of Fluctuations in Timber Supply and Price: A Case Study from Poland. Forests. 2019; 10(11):990. https://doi.org/10.3390/f10110990
Chicago/Turabian StyleBanaś, Jan, and Anna Kożuch. 2019. "The Application of Time Series Decomposition for the Identification and Analysis of Fluctuations in Timber Supply and Price: A Case Study from Poland" Forests 10, no. 11: 990. https://doi.org/10.3390/f10110990
APA StyleBanaś, J., & Kożuch, A. (2019). The Application of Time Series Decomposition for the Identification and Analysis of Fluctuations in Timber Supply and Price: A Case Study from Poland. Forests, 10(11), 990. https://doi.org/10.3390/f10110990