Seven Decades of Spontaneous Forest Regeneration after Large-Scale Clear-Cutting in Białowieża Forest do not Ensure the Complete Recovery of Collembolan Assemblages
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection and Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix
Taxa | Life Form | Spn | Mat | Res | Total |
Ceratophysella engadinensis (Gisin, 1949) | ep | 1 | 56 | 40 | 97 |
C. mosquensis (Becker, 1905) | ep | - | 1 | - | 1 |
Ceratophysella sp. juv. | ep | 3 | 13 | 2 | 18 |
Xenylla brevicauda (Tullberg, 1869) | h | 7 | - | - | 7 |
Xenylla sp. juv. | h | 25 | - | - | 25 |
Willemia anopthalma (Börner, 1901) | eu | 1 | - | 56 | 57 |
W. denisi (Mills, 1932) sensu (Fjellberg 1985) | eu | - | 8 | 28 | 36 |
Willemia sp. juv. | eu | - | 1 | 2 | 3 |
Xenyllodes armatus (Axelson, 1903) | h | - | 1 | - | 1 |
Friesea claviseta (Axelson, 1900) | ep | - | - | 56 | 56 |
Friesea sp. juv. | ep | - | - | 1 | 1 |
Pseudachorutes corticicolus (Schäffer, 1896) | ep | - | 3 | 10 | 13 |
P. dubius (Krausbauer, 1898) | ep | 1 | - | - | 1 |
P. parvulus (Börner, 1901) | ep | 1 | 1 | 11 | 13 |
Pseudachorutes sp. juv. | ep | 3 | - | 3 | 6 |
Micranurida pygmea (Börner, 1901) | h | 1 | - | 9 | 10 |
Anurida granulata (Agrell, 1943) | h | - | 4 | 3 | 7 |
Neanura muscorum (Templeton, 1835) | h | 23 | 5 | 9 | 37 |
Micraphorura absoloni (Börner, 1901) | eu | 5 | 9 | 40 | 54 |
Protaphorura bicampata (Gisin, 1956) | eu | - | 16 | - | 16 |
P. pannonica (Haybach, 1960) | eu | 55 | 17 | 54 | 126 |
P. subarmata (Gisin, 1957) | eu | - | 67 | 67 | 134 |
P. tricampata (Gisin, 1956) | eu | 7 | 1 | - | 8 |
Protaphorura sp. juv. | eu | 16 | 11 | 58 | 85 |
Supraphorura furcifera (Börner, 1901) | eu | - | 11 | - | 11 |
Hymenaphorura polonica (Pomorski, 1990) | eu | - | - | 25 | 25 |
Mesaphorura critica (Ellis, 1976) | eu | - | 1 | 10 | 11 |
M. hylophila (Rusek, 1982) | eu | 3 | 9 | 7 | 19 |
M. italica (Rusek, 1971) | eu | - | - | 3 | 3 |
M. macrochaeta (Rusek, 1976) | eu | 65 | 54 | 91 | 210 |
M. sylvatica (Rusek, 1971) | eu | - | - | 1 | 1 |
M. tenuisensillata (Rusek, 1974) | eu | - | 7 | 12 | 19 |
M. yosii (Rusek, 1967) | eu | - | 6 | 35 | 41 |
Mesaphorura sp. juv. | eu | 1 | 1 | 9 | 11 |
Karlstejnia norvegica (Fjellberg, 1974) | eu | 1 | - | 1 | 2 |
Stenaphorurella quadrispina (Börner, 1901) | eu | 1 | - | - | 1 |
Anurophorus septentrionalis (Pallisa, 1966) | h | - | - | 30 | 30 |
Anurophorus sp. juv. | h | 1 | - | 33 | 34 |
Folsomia dovrensis (Fjellberg, 1976) | eu | - | 1 | 1 | 2 |
F. fimetarioides (Axelson, 1903) | eu | - | 73 | - | 73 |
F. lawrencei (Rusek, 1984) | eu | 4 | - | - | 4 |
F. manolachei (Bagnal, 1939) | h | 10 | - | - | 10 |
F. stella (Christansen & Tucker, 1977) | eu | - | 1 | 9 | 10 |
F. quadrioculata (Tullberg, 1871) | h | 228 | 420 | 631 | 1279 |
Appendisotoma juliannae (Traser, 1993) | ep | - | - | 190 | 190 |
Proisotoma armeriae (Fjellberg, 1976) | h | - | 1 | - | 1 |
P. minima (Tullberg, 1871) | h | 4 | 5 | 31 | 40 |
Proisotoma sp. juv. | h | - | - | 1 | 1 |
Isotomiella minor (Schäffer, 1896) | eu | 509 | 339 | 893 | 1741 |
Parisotoma notabilis (Schäffer, 1896) | h | 970 | 310 | 323 | 1603 |
Vertagopus sp. juv. | ep | - | - | 1 | 1 |
Isotoma viridis (Bourlet, 1839) | ep | - | 41 | - | 41 |
Isotoma sp. juv. | ep | 2 | 11 | 2 | 15 |
Desoria divergens (Axelson, 1900) | ep | 8 | - | 12 | 20 |
D. tigrina (Tullberg, 1871) | ep | - | 33 | 13 | 46 |
D. violacea (Tullberg, 1876) | ep | - | 44 | 12 | 56 |
Isotomidae juv. | ep | - | - | 30 | 30 |
Tomocerus vulgaris (Tullberg, 1871) | ep | - | 1 | 2 | 3 |
Pogonognathellus flavescens (Tullberg, 1871) | ep | 4 | 99 | 47 | 150 |
Tomoceridae juv. | ep | 2 | 12 | 4 | 18 |
Orchesella bifasciata (Nicolet, 1841) | a | 2 | - | - | 2 |
O. flavescens (Bourlet, 1839) | a | 9 | 55 | 10 | 74 |
Orchesella sp. juv. | a | 3 | 3 | - | 6 |
Entomobrya corticalis (Nicolet, 1841) | a | 2 | - | - | 2 |
E. nivalis (Linnaeus, 1758) | a | 2 | - | - | 2 |
Entomobryides myrmecophilus (Reuter, 1886) | a | 2 | 1 | - | 3 |
Willowsia buski (Lubbock, 1869) | a | 1 | - | - | 1 |
Willowsia nigromaculata (Lubbock, 1876) | a | 1 | 4 | 7 | 12 |
Lepidocyrtus lignorum (Fabricius, 1793) | ep | - | 37 | 47 | 84 |
Lepidocyrtus sp. 1 | ep | 2 | - | - | 2 |
Lepidocyrtus violaceus gr juv. | ep | 1 | - | - | 1 |
Lepidocyrtus lignorum gr juv. | ep | 106 | 3 | 24 | 133 |
Pseudosinella alba (Packard, 1873) | h | 65 | - | - | 65 |
Pseudosinella zygophora (Schille, 1908) | h | 156 | 93 | 49 | 298 |
Entomobyidae juv. | ep | 101 | 54 | 4 | 159 |
Neelides minutus (Folsom, 1901) | eu | - | 1 | - | 1 |
Megalothorax minimus (Willem, 1900) | eu | 40 | 33 | 16 | 89 |
Sphaeridia pumilis (Krausbauer, 1898) | ep | 14 | 38 | 2 | 54 |
Sminthurides malmgreni (Tullberg, 1876) | a | - | 2 | - | 2 |
Arrhopalites caecus (Tullberg, 1871) | h | - | 2 | - | 2 |
A. spinosus (Rusek, 1967) | h | - | 1 | 13 | 14 |
Arrhopalites sp. juv. | h | 3 | 6 | 3 | 12 |
Sminthurinus elegans (Fitch, 1863) | ep | 1 | 2 | - | 3 |
Sminthurinus sp. juv. | ep | 13 | 19 | 9 | 41 |
Ptenothrix sp. juv. | a | - | - | 7 | 7 |
Dicyrtoma sp. juv. | a | - | 1 | 2 | 3 |
Lipotrix lubbocki (Tullberg, 1872) | ep | 8 | 14 | 4 | 26 |
Allacma fusca (Linnaeus, 1758) | a | 3 | - | - | 3 |
Caprainea marginata (Schött, 1893) | ep | - | 10 | 10 | 20 |
Sminthuridae juv. | a | - | - | 2 | 2 |
Symphypleona juv. | a | 10 | 13 | 1 | 24 |
Total number of individuals | 2507 | 2086 | 3118 | 7711 | |
Total number of taxa | 52 | 59 | 63 | 91 |
References
- Gardiner, B.; Blennow, K.; Carnus, J.-M.; Fleischer, P.; Ingemarson, F.; Landmann, G.; Lindner, M.; Marzano, M.; Nicoll, B.; Orazio, C.; et al. Destructive Storms in European Forests: Past and Forthcoming Impacts; Final Report to EC DG Environment; EFI Atlantic: Bordeaux, France, 2010. [Google Scholar]
- Brázdil, R.; Stucki, P.; Szabó, P.; Řezníčková, L.; Dolák, L.; Dobrovolný, P.; Tolasz, R.; Kotyza, O.; Chromá, K.; Suchánková, S. Windstorms and forest disturbances in the Czech Lands: 1801–2015. Agric. For. Meteorol. 2018, 250–251, 47–63. [Google Scholar] [CrossRef]
- Dale, V.H.; Joyce, L.A.; McNulty, S.; Neilson, R.P.; Ayres, M.P.; Flannigan, M.D.; Hanson, P.J.; Irland, L.C.; Lugo, A.E.; Peterson, C.J.; et al. Climate change and forest disturbances. BioScience 2001, 51, 723–734. [Google Scholar] [CrossRef]
- Seidl, R.; Schelhaas, M.-J.; Lexer, M.J. Unraveling the drivers of intensifying forest disturbance regimes in Europe. Glob. Chang. Biol. 2011, 17, 2842–2852. [Google Scholar] [CrossRef]
- Rykowski, K. Hurricane in Forests: Calamity or Disturbance in Development? Pisz Forest District 4th July 2002: Case Study; Forest Research Institute: Sękocin Stary, Poland, 2012. [Google Scholar]
- Karpiński, J. Białowieża primeval forest and national park in Białowieża. In Forest Inspectorate; Białowieża: Warsaw, Poland, 1930. [Google Scholar]
- Więcko, E. Management in the Białowieża Forest between the first and the second world wars. Sylwan 1980, 8, 55–65. [Google Scholar]
- Paluch, R.; Bielak, K. Stand conversion by means of natural succession in the Białowieża primeval forest. For. Res. Pap. 2009, 70, 339–354. [Google Scholar] [CrossRef]
- Bird, G.A.; Chatarpaul, L. Effect of whole-tree and conventional forest harvest on soil microarthropods. Can. J. Zool. 1986, 64, 1986–1993. [Google Scholar] [CrossRef]
- Addison, J.A.; Barber, K. Response of Soil Invertebrates to Clear-Cutting and Partial Cutting in a Boreal Mixedwood Forest in Northern Ontario; Great Lakes Forestry Centre: Sault Ste. Marie, ON, Canada, 1997. [Google Scholar]
- Lindo, Z.; Visser, S. Forest floor microarthropod abundance and oribatid mite (Acari: Oribatida) composition following partial and clear-cut harvesting in the mixedwood boreal forest. Can. J. For. Res. 2004, 34, 998–1006. [Google Scholar] [CrossRef] [Green Version]
- Siira-Pietikäinen, A.; Haimi, J. Changes in soil fauna 10 years after forest harvestings: Comparison between clear felling and green-tree retention methods. For. Ecol. Manag. 2009, 258, 332–338. [Google Scholar] [CrossRef]
- Farská, J.; Prejzková, K.; Rusek, J. Management intensity affects traits of soil microarthropod community in montane spruce forest. Appl. Soil Ecol. 2014, 75, 71–79. [Google Scholar] [CrossRef]
- Rousseau, L.; Venier, L.; Hazlett, P.; Fleming, R.; Morris, D.; Handa, I.T. Forest floor mesofauna communities respond to a gradient of biomass removal and soil disturbance in a boreal jack pine (Pinus banksiana) stand of northeastern Ontario (Canada). For. Ecol. Manag. 2018, 407, 155–165. [Google Scholar] [CrossRef]
- Rousseau, L.; Venier, L.; Aubin, I.; Gendreau-Berthiaume, B.; Moretti, M.; Salmon, S.; Handa, I.T. Woody biomass removal in harvested boreal forest leads to a partial functional homogenization of soil mesofaunal communities relative to unharvested forest. Soil Biol. Biochem. 2019, 133, 129–136. [Google Scholar] [CrossRef]
- Berch, S.M.; Battigelli, J.P.; Hope, G.D. Responses of soil mesofauna communities and oribatid mite species to site preparation treatments in high-elevation cutblocks in southern British Columbia. Pedobiologia 2007, 51, 23–32. [Google Scholar] [CrossRef]
- Addison, J. Impact of Retaining Woody Debris and Forest Floor Habitats on Stand. Level of Diversity of Soil Collembola; School of Environment and Sustainability, Royal Road University: Victoria, BC, Canada, 2006. [Google Scholar]
- Bengtsson, J.; Lundkvist, H.; Saetre, P.; Sohlenius, B.; Solbreck, B. Effects of organic matter removal on the soil food web: Forestry practices meet ecological theory. Appl. Soil Ecol. 1998, 9, 137–143. [Google Scholar] [CrossRef]
- Rousseau, L.; Venier, L.; Fleming, R.; Hazlett, P.; Morris, D.; Handa, I.T. Long-term effects of biomass removal on soil mesofaunal communities in northeastern Ontario (Canada) jack pine (Pinus banksiana) stands. For. Ecol. Manag. 2018, 421, 72–83. [Google Scholar] [CrossRef]
- Hopkin, S. Biology of the Springtails: (Insecta: Collembola); OUP: Oxford, UK, 1997. [Google Scholar]
- Rusek, J. Biodiversity of Collembola and their functional role in the ecosystem. Biodivers. Conserv. 1998, 7, 1207–1219. [Google Scholar] [CrossRef]
- Wolters, V. Biodiversity of soil animals and its function. Eur. J. Soil Biol. 2001, 37, 221–227. [Google Scholar] [CrossRef] [Green Version]
- Andre, H.M.; Ducarme, X.; Lebrun, P. Soil biodiversity: Myth, reality or conning? Oikos 2002, 96, 3–24. [Google Scholar] [CrossRef]
- Potapov, A.M.; Goncharov, A.A.; Semenina, E.E.; Korotkevich, A.Y.; Tsurikov, S.M.; Rozanova, O.L.; Anichkin, A.E.; Zuev, A.G.; Samoylova, E.S.; Semenyuk, I.I.; et al. Arthropods in the subsoil: Abundance and vertical distribution as related to soil organic matter, microbial biomass and plant roots. Eur. J. Soil Biol. 2017, 82, 88–97. [Google Scholar] [CrossRef]
- Juceviča, E.; Melecis, V. Long-term dynamics of Collembola in a pine forest ecosystem. Pedobiologia 2002, 46, 365–372. [Google Scholar] [CrossRef]
- Perez, G.; Decaëns, T.; Dujardin, G.; Akpa-Vinceslas, M.; Langlois, E.; Chauvat, M. Response of Collembolan assemblages to plant species successional gradient. Pedobiologia 2013, 56, 169–177. [Google Scholar] [CrossRef]
- Daghighi, E.; Koehler, H.; Kesel, R.; Filser, J. Long-term succession of Collembola communities in relation to climate change and vegetation. Pedobiologia 2017, 64, 25–38. [Google Scholar] [CrossRef]
- Gisin, H. Okologie und Levensgemenischaften der Collembolen im schweizerischen Exkursionsgebiet Basels. Rev. Suisse Zool. 1943, 50, 131–224. [Google Scholar]
- Potapov, A.A.; Semenina, E.E.; Korotkevich, A.Y.; Kuznetsova, N.A.; Tiunov, A.V. Connecting taxonomy and ecology: Trophic niches of Collembolans as related to taxonomic identity and life forms. Soil Biol. Biochem. 2016, 101, 20–31. [Google Scholar] [CrossRef]
- Malmström, A. Life-history traits predict recovery patterns in Collembola species after fire: A 10 year study. Appl. Soil Ecol. 2012, 56, 35–42. [Google Scholar] [CrossRef]
- Pey, B.; Nahmani, J.; Auclerc, A.; Capowiez, Y.; Cluzeau, D.; Cortet, J.; Decaëns, T.; Deharveng, L.; Dubs, F.; Joimel, S.; et al. Current use of and future needs for soil invertebrate functional traits in community ecology. Basic Appl. Ecol. 2014, 15, 194–206. [Google Scholar] [CrossRef] [Green Version]
- Mori, A.S.; Ota, A.T.; Fujii, S.; Seino, T.; Kabeya, D.; Okamoto, T.; Ito, M.T.; Kaneko, N.; Hasegawa, M. Biotic homogenization and differentiation of soil faunal communities in the production forest landscape: Taxonomic and functional perspectives. Oecologia 2015, 177, 533–544. [Google Scholar] [CrossRef]
- da Silva, P.M.; Carvalho, F.; Dirilgen, T.; Stone, D.; Creamer, R.; Bolger, T.; Sousa, J.P. Traits of Collembolan life-form indicate land use types and soil properties across an European transect. Appl. Soil Ecol. 2016, 97, 69–77. [Google Scholar] [CrossRef]
- Materna, J. Collembolan succession on afforested colliery spoil heaps in two contrasting postmining landscapes. In Soil Zoological Problems in Central Europe; Tajovský, K., Pižl, V., Eds.; Institute of Soil Biology, Academy of Sciences of the Czech Republic: České Budéjovice, Czech Republic, 1999; pp. 223–231. [Google Scholar]
- Addison, J.A.; Trofymow, J.A.; Marshall, V.G. Abundance, species diversity, and community structure of Collembola in successional coastal temperate forests on Vancouver Island, Canada. Appl. Soil Ecol. 2003, 24, 233–246. [Google Scholar] [CrossRef]
- Chauvat, M.; Zaitsev, A.S.; Wolters, V. Successional changes of Collembola and soil microbiota during forest rotation. Oecologia 2003, 137, 269–276. [Google Scholar] [CrossRef]
- Chauvat, M.; Trap, J.; Perez, G.; Delporte, P.; Aubert, M. Assemblages of Collembola across a 130-year chronosequence of beech forest. Soil Org. 2011, 83, 405–418. [Google Scholar]
- Dunger, W.; Schulz, H.-J.; Zimdars, B.; Hohberg, K. Changes in Collembolan species composition in Eastern German mine sites over fifty years of primary succession. Pedobiologia 2004, 48, 503–517. [Google Scholar] [CrossRef]
- Dunger, W.; Voigtländer, K. Soil fauna (Lumbricidae, Collembola, Diplopoda and Chilopoda) as indicators of soil eco-subsystem development in post-mining sites of eastern Germany—A review. Soil Org. 2009, 81, 1–51. [Google Scholar]
- Zeppelini, D.; Bellini, B.C.; Creão-Duarte, A.J.; Hernández, M.I.M. Collembola as bioindicators of restoration in mined sand dunes of Northeastern Brazil. Biodivers. Conserv. 2009, 18, 1161–1170. [Google Scholar] [CrossRef]
- Michalczuk, C. Forest habitat and tree stands of Białowieża National Park. Phytocenosis Suppl. Cartogr. Geobot. 2001, 13, 1–22. [Google Scholar]
- Babenko, A.; Chernova, N.; Potapov, M.; Stebaeva, S. Collembola of Russia and Adjacent Countries: Family Hypogastruridae; Nauka: Moscow, Russia, 1994. [Google Scholar]
- Fjellberg, A. The Collembola of Fennoscandia and Denmark Part 1: Poduromorpha; Fauna Entomologica Scandinavica; Brill: Leiden, The Netherlands, 1998. [Google Scholar]
- Fjellberg, A. The Collembola of Fennoscandia and Denmark Part 2: Entomobryomorpha and Symphypleona; Fauna Entomologica Scandinavica; Brill: Leiden, The Netherlands, 2007. [Google Scholar]
- Pomorski, R.J. Onychiurinae of Poland (Collembola: Onychiuridae). Genus 1998, 9, 1–201. [Google Scholar]
- Bretfeld, G. Symphypleona. In Synopses on Palearctic Collembola; Dunger, W., Ed.; Staatliches Museum für Naturkunde Görlitz: Görlitz, Germany, 1999; pp. 1–318. [Google Scholar]
- Potapov, M. Isotomidae. In Synopses on Palaearctic Collembola; Dunger, W., Ed.; Staatliches Museum fr Naturkunde Görlitz: Görlitz: Germany, 2001; pp. 1–603. [Google Scholar]
- Thibaud, J.M.; Schulz, H.J.; Assalino, M.M.D.G. Hypogastruridae. In Synopses on Palaearctic Collembola; Dunger, W., Ed.; Staatliches Museum für Naturkunde Görlitz: Görlitz, Germany, 2004; pp. 1–287. [Google Scholar]
- Dunger, W.; Schlitt, B. Synopses on Palearctic Collembola: Tullbergiidae; Staatliches Museum für Naturkunde Görlitz: Görlitz, Germany, 2011. [Google Scholar]
- Petersen, H. General aspects of Collembolan ecology at the turn of the millennium. Pedobiologia 2002, 46, 246–260. [Google Scholar] [CrossRef]
- Chao, A.; Jost, L. Coverage-based rarefaction and extrapolation: Standardizing samples by completeness rather than size. Ecology 2012, 93, 2533–2547. [Google Scholar] [CrossRef]
- Chao, A.; Gotelli, N.J.; Hsieh, T.C.; Sander, E.L.; Ma, K.H.; Colwell, R.K.; Ellison, A.M. Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies. Ecol. Monogr. 2014, 84, 45–67. [Google Scholar] [CrossRef]
- Hsieh, T.C.; Ma, K.H.; Chao, A.; McInerny, G. iNEXT: An R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 2016, 7, 1451–1456. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Available online: https://www.R-project.org/ (accessed on 8 January 2019).
- Oksanen, J.; Blanchet, F.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.; O’Hara, R.; Simpson, G.; Solymos, P.; et al. Vegan: Community Ecology Package. R Package. Available online: http://CRAN.Rproject. org/package=vegan (accessed on 8 January 2019).
- Anderson, M.J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 2001, 26, 32–46. [Google Scholar] [CrossRef]
- Anderson, M.J.; Walsh, D.C.I. PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions: What null hypothesis are you testing? Ecol. Monogr. 2013, 83, 557–574. [Google Scholar] [CrossRef]
- Dufrene, M.; Legendre, P. Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecol. Monogr. 1997, 67, 345–366. [Google Scholar] [CrossRef]
- De Cáceres, M.; Legendre, P.; Moretti, M. Improving indicator species analysis by combining groups of sites. Oikos 2010, 119, 1674–1684. [Google Scholar] [CrossRef]
- Beasley, T.M.; Schumacker, R.E. Multiple regression approach to analyzing contingency tables: Post Hoc and planned comparison procedures. J. Exp. Educ. 1995, 64, 79–93. [Google Scholar] [CrossRef]
- Covington, W.W. Changes in forest floor organic matter and nutrient content following clear cutting in Northern Hardwoods. Ecology 1981, 62, 41–48. [Google Scholar] [CrossRef]
- Seastedt, T.R.; Crossley, D.A. Microarthropod response following cable logging and clear-cutting in the southern appalachians. Ecology 1981, 62, 126–135. [Google Scholar] [CrossRef]
- Blair, J.M.; Crossley, D.A. Litter decomposition, nitrogen dynamics and litter microarthropods in a southern Appalachian hardwood forest 8 years following clearcutting. J. Appl. Ecol. 1988, 25, 683–698. [Google Scholar] [CrossRef]
- Sterzyńska, M. Collembola in the process of secondary succession of the pine forests of Puszcza Białowieska. Fragm. Faun. 1995, 38, 353–364. [Google Scholar] [CrossRef]
- Malmström, A.; Persson, T.; Ahlström, K.; Gongalsky, K.B.; Bengtsson, J. Dynamics of soil meso- and macrofauna during a 5-year period after clear-cut burning in a boreal forest. Appl. Soil Ecol. 2009, 43, 61–74. [Google Scholar] [CrossRef]
- Siira-Pietikäinen, A.; Haimi, J.; Siitonen, J. Short-term responses of soil macroarthropod community to clear felling and alternative forest regeneration methods. For. Ecol. Manag. 2003, 172, 339–353. [Google Scholar] [CrossRef]
- Kopeszki, H. Collembolan fauna, in Vienna beech wood in relation to litter accumulation and depletion. Pol. Pismo Entomol. 1995, 64, 357–362. [Google Scholar]
- Setälä, H.; Haimi, J.; Siira-Pietikäinen, A. Sensitivity of soil processes in northern forest soils: Are management practices a threat? For. Ecol. Manag. 2000, 133, 5–11. [Google Scholar] [CrossRef]
- Huhta, V.; Karppinen, E.; Nurminen, M.; Valpas, A. Effect of silvicultural practices upon Arthropos, Annelid and Nematode populations in coniferous forest soil. Ann. Zool. Fenn. 1967, 4, 87–145. [Google Scholar]
- Huhta, V.; Nurminen, M.; Valpas, A. Further notes on the effect of silvicultural practices upon the fauna of coniferous forest soil. Ann. Zool. Fenn. 1969, 6, 327–334. [Google Scholar]
- Huhta, V. Effects of clear-cutting on numbers, biomass and community respiration of soil invertebrates. Ann. Zool. Fenn. 1976, 13, 63–80. [Google Scholar]
- Bird, S.B.; Coulson, R.N.; Fisher, R.F. Changes in soil and litter arthropod abundance following tree harvesting and site preparation in a loblolly pine (Pinus taeda L.) plantation. For. Ecol. Manag. 2004, 202, 195–208. [Google Scholar] [CrossRef]
- Cassagne, N.; Gers, C.; Gauquelin, T. Relationships between Collembola, soil chemistry and humus types in forest stands (France). Biol. Fertil. Soils 2003, 37, 355–361. [Google Scholar] [CrossRef]
- Kováč, L.u.; Kostúrová, N.; Miklisová, D. Comparison of collembolan assemblages (Hexapoda, Collembola) of thermophilous oak woods and Pinus nigra plantations in the Slovak Karst (Slovakia). Pedobiologia 2005, 49, 29–40. [Google Scholar] [CrossRef]
- Salmon, S.; Artuso, N.; Frizzera, L.; Zampedri, R. Relationships between soil fauna communities and humus forms: Response to forest dynamics and solar radiation. Soil Biol. Biochem. 2008, 40, 1707–1715. [Google Scholar] [CrossRef]
- Sławska, M.; Bruckner, A.; Sławski, M. Edaphic Collembola assemblages of European temperate primeval forests gradually change along a forest-type gradient. Eur. J. Soil Biol. 2017, 80, 92–101. [Google Scholar] [CrossRef]
- Zanella, A.; Ponge, J.-F.; Briones, M.J.I. Humusica 1, article 8: Terrestrial humus systems and forms—Biological activity and soil aggregates, space-time dynamics. Appl. Soil Ecol. 2018, 122, 103–137. [Google Scholar] [CrossRef]
- Hasegawa, M.; Fukuyama, K.; Makino, S.I.; Okochi, I.; Goto, H.; Mizoguchi, T.; Sakata, T.; Tanaka, H. Collembolan community dynamics during deciduous forests regeneration in Japan. Pedobiologia 2006, 50, 117–126. [Google Scholar] [CrossRef]
- Čuchta, P.; Miklisová, D.; Kováč, Ľ. The succession of soil Collembola communities in spruce forests of the High Tatra Mountains five years after a windthrow and clear–cut logging. For. Ecol. Manag. 2019, 433, 504–513. [Google Scholar] [CrossRef]
- Korboulewsky, N.; Perez, G.; Chauvat, M. How tree diversity affects soil fauna diversity: A review. Soil Biol. Biochem. 2016, 94, 94–106. [Google Scholar] [CrossRef]
- Russell, D.J.; Gergócs, V. Forest-management types similarly influence soil collembolan communities throughout regions in Germany—A data bank analysis. For. Ecol. Manag. 2019, 434, 49–62. [Google Scholar] [CrossRef]
- Skarżyński, D.; Piwnik, A.; Krzysztofiak, A. Saproxylic springtails (Collembola) of the Wigry National Park. For. Res. Pap. 2016, 77, 186–203. [Google Scholar] [CrossRef]
- Sławski, M. Analysis of forest structure in relation to age—Scots pine case study. Sylwan 2011, 155, 10–20. [Google Scholar]
- Marshall, V.G. Impacts of forest harvesting on biological processes in northern forest soils. For. Ecol. Manag. 2000, 133, 43–60. [Google Scholar] [CrossRef]
- Auclerc, A.; Ponge, J.F.; Barot, S.; Dubs, F. Experimental assessment of habitat preference and dispersal ability of soil springtails. Soil Biol. Biochem. 2009, 41, 1596–1604. [Google Scholar] [CrossRef] [Green Version]
- Picchio, R.; Venanzi, R.; Tavankar, F.; Luchenti, I.; Iranparast Bodaghi, A.; Latterini, F.; Nikooy, M.; Di Marzio, N.; Naghdi, R. Changes in soil parameters of forests after windstorms and timber extraction. Eur. J. For. Res. 2019, 138, 875–888. [Google Scholar] [CrossRef]
- Gomez, A.; Powers, R.F.; Singer, M.J.; Horwath, W.R. Soil compaction effects on growth of young ponderosa pine following litter removal in California’s Sierra Nevada. Soil Sci. Soc. Am. J. 2002, 66, 1334–1343. [Google Scholar] [CrossRef]
- Cambi, M.; Hoshika, Y.; Mariotti, B.; Paoletti, E.; Picchio, R.; Venanzi, R.; Marchi, E. Compaction by a forest machine affects soil quality and Quercus robur L. seedling performance in an experimental field. For. Ecol. Manag. 2017, 384, 406–414. [Google Scholar] [CrossRef]
- Geissen, V.; Kim, R.Y.; Schöning, A.; Schütte, S.; Brümmer, G.W. Effects of strip wise tillage in combination with liming on chemical and physical properties of acidic spruce forest soils after clear cutting. For. Ecol. Manag. 2003, 180, 75–83. [Google Scholar] [CrossRef]
- Battigelli, J.P.; Spence, J.R.; Langor, D.W.; Berch, S.M. Short-term impact of forest soil compaction and organic matter removal on soil mesofauna density and oribatid mite diversity. Can. J. For. Res. 2004, 34, 1136–1149. [Google Scholar] [CrossRef]
Indicator Species | Forest Type | Specificity | Fidelity | IndVal Test Statistics | Significance |
---|---|---|---|---|---|
Micraphorura absoloni | Res | 0.74 | 1 | 0.861 | 0.014 |
Mesaphorura yosii | Res | 0.85 | 0.83 | 0.843 | 0.014 |
Arrhopalites spinosus | Res | 0.93 | 0.67 | 0.787 | 0.011 |
Pogonognatellus flavescens | Mat + Res | 0.97 | 0.92 | 0.945 | 0.023 |
Lepidocyrtus lignorum | Mat + Res | 1 | 0.83 | 0.913 | 0.004 |
Protaphorura subarmata | Mat + Res | 1 | 0.67 | 0.816 | 0.036 |
Protaphorura pannonica | Spn + Res | 0.8651 | 1 | 0.93 | 0.019 |
Life Form | Spn | Mat | Res | Total N |
---|---|---|---|---|
Atmobiotic | 1% (−2.07)NS | 4% (7.66)*** | 1% (−4.96)*** | 143 |
Epedaphic | 11% (−9.83)*** | 24% (−9.62)*** | 17% (0.67)NS | 1299 |
Hemiedaphic | 60% (17.73)*** | 41% (−4.76)*** | 36% (−12.61)*** | 3476 |
Euedaphic | 28% (−10.12)*** | 32% (−4.72)*** | 45% (13.93)*** | 2793 |
Total N | 2507 | 2086 | 3118 | 7711 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sławski, M.; Sławska, M. Seven Decades of Spontaneous Forest Regeneration after Large-Scale Clear-Cutting in Białowieża Forest do not Ensure the Complete Recovery of Collembolan Assemblages. Forests 2019, 10, 948. https://doi.org/10.3390/f10110948
Sławski M, Sławska M. Seven Decades of Spontaneous Forest Regeneration after Large-Scale Clear-Cutting in Białowieża Forest do not Ensure the Complete Recovery of Collembolan Assemblages. Forests. 2019; 10(11):948. https://doi.org/10.3390/f10110948
Chicago/Turabian StyleSławski, Marek, and Małgorzata Sławska. 2019. "Seven Decades of Spontaneous Forest Regeneration after Large-Scale Clear-Cutting in Białowieża Forest do not Ensure the Complete Recovery of Collembolan Assemblages" Forests 10, no. 11: 948. https://doi.org/10.3390/f10110948
APA StyleSławski, M., & Sławska, M. (2019). Seven Decades of Spontaneous Forest Regeneration after Large-Scale Clear-Cutting in Białowieża Forest do not Ensure the Complete Recovery of Collembolan Assemblages. Forests, 10(11), 948. https://doi.org/10.3390/f10110948