Shifts of the Mean Centers of Potential Vegetation Ecosystems under Future Climate Change in Eurasia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources
2.2. Methods
2.2.1. The HLZ Ecosystem Classification
2.2.2. Shift Model of Mean Center in Potential Vegetation Ecosystems
3. Results
3.1. Distribution of the Mean Centers of Potential Vegetation Ecosystems
3.2. Shift Trends of the Mean Center of Potential Vegetation Types
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ye, D.Z.; Fu, C.B.; Dong, W.J. Progresses and future trends of global change sciences. Adv. Earth Sci. 2002, 17, 467–469. (In Chinese) [Google Scholar]
- Willis, K.J.; Jeffers, E.S.; Tovar, C. What makes a terrestrial ecosystem resilient? Science 2018, 359, 988–989. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.S.; Zhang, X.S. Feedback of vegetation on climate. Acta Bot. Sin. 1996, 38, 1–7. (In Chinese) [Google Scholar]
- Scholze, M.; Knorr, W.; Arnell, N.W.; Prentice, I.C. A climate-change risk analysis for world ecosystems. Proc. Natl. Acad. Sci. USA 2006, 103, 13116–13120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biermann, F. ‘Earth system governance’ as a crosscutting theme of global change research. Glob. Environ. Chang. 2007, 17, 326–337. [Google Scholar] [CrossRef]
- Nemani, R.R.; Keeling, C.D.; Hashimoto, H.; Jolly, W.M.; Piper, S.C.; Tucker, C.J.; Myneni, R.B.; Running, S.W. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 2003, 300, 1560–1563. [Google Scholar] [CrossRef] [PubMed]
- Schouw, J.F. Grundzuege einer Allgemeinen Pflanzengeographie; Reimer: Berlin, Germany, 1823. [Google Scholar]
- Woodward, F.I. Climate and Plant Distribution; Cambridge University Press: Cambridge, UK, 1987. [Google Scholar]
- Holdridge, L.R. Life Zone Ecology; Tropical Science Center: San José, Costa Rica, 1967. [Google Scholar]
- Yue, T.X.; Liu, J.Y.; Jørgensen, S.E.; Gao, Z.Q.; Zhang, S.H.; Deng, X.Z. Changes of Holdridge life zone diversity in all of China over a half century. Ecol. Model. 2001, 144, 153–162. [Google Scholar] [CrossRef]
- Yue, T.X.; Fan, Z.M.; Chen, C.F.; Sun, X.F.; Li, B.L. Surface modelling of global terrestrial ecosystems under three climate change scenarios. Ecol. Model. 2011, 222, 2342–2361. [Google Scholar] [CrossRef]
- Leemans, R.; Eickhout, B. Another reason for concern: Regional and global impacts on ecosystems for different levels of climate change. Glob. Environ. Chang. 2004, 14, 219–228. [Google Scholar] [CrossRef]
- Li, N.; Xie, G.D.; Zhang, C.S.; Xiao, Y.; Zhang, B.A.; Chen, W.H.; Sun, Y.Z.; Wang, S. Biomass Resources Distribution in the Terrestrial Ecosystem of China. Sustainability 2015, 7, 8548–8564. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.C.; Piao, S.L.; Myneni, R.B.; Huang, M.T.; Zeng, Z.Z.; Canadell, J.G.; Ciais, P.; Sitch, S.; Friedlingstein, P.; Arneth, A.; et al. Greening of the Earth and its drivers. Nat. Clim. Chang. 2016, 6, 791–795. [Google Scholar] [CrossRef]
- Stan, K.; Sanchez-Azofeifa, A. Tropical Dry Forest Diversity, Climatic Response, and Resilience in a Changing Climate. Forests 2019, 10, 443. [Google Scholar] [CrossRef]
- Yue, T.X.; Fan, Z.M. A review of responses of typical terrestrial ecosystems to climate change. Chin. Sci. Bull. 2014, 59, 217–231. (In Chinese) [Google Scholar]
- Box, E.O. Predicting Physiognomic Vegetation Types with Climate Variables. Vegetatio 1981, 45, 127–139. [Google Scholar] [CrossRef]
- Neilson, R.P.; King, G.A.; Koerper, G. Toward a Rule-Based Biome Model. Landsc. Ecol. 1992, 7, 27–43. [Google Scholar] [CrossRef]
- Foley, J.A.; Prentice, I.C.; Ramankutty, N.; Levis, S.; Pollard, D.; Sitch, S.; Haxeltine, A. An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Global Biogeochem. Cycles 1996, 10, 603–628. [Google Scholar] [CrossRef]
- Post, W.M.; Emanuel, W.R.; Zinke, P.J.; Stangenberger, A.G. Soil carbon pools and world life zones. Nature 1982, 298, 156–159. [Google Scholar] [CrossRef]
- Lugo, A.E.; Brown, S.L.; Dodson, R.; Smith, T.S.; Shugart, H.H. The Holdridge life zones of the conterminous United States in relation to ecosystem mapping. J. Biogeogr. 1999, 26, 1025–1038. [Google Scholar] [CrossRef]
- Fan, Z.M.; Li, J.; Yue, T.X. Land-cover changes of biome transition zones in Loess Plateau of China. Ecol. Model. 2013, 252, 129–140. [Google Scholar] [CrossRef]
- Fan, Z.M.; Li, J.; Yue, T.X.; Zhou, X.; Lan, A.J. Scenarios of land cover in Karst area of Southwestern China. Environ. Earth Sci. 2015, 74, 6407–6420. [Google Scholar] [CrossRef]
- Szelepcsényi, Z.; Breuer, H.; Kis, A.; Pongrácz, R.; Sümegi, P. Assessment of projected climate change in the Carpathian Region using the Holdridge life zone system. Theor. Appl. Climatol. 2018, 131, 593–610. [Google Scholar] [CrossRef]
- Herrick, J.E.; Bestelmeyer, B.T.; Archer, S.; Tugel, A.J.; Brown, J.R. An integrated framework for science-based arid land management. J. Arid Environ. 2006, 65, 319–335. [Google Scholar] [CrossRef]
- Weismiller, R.A.; Kristof, S.J.; Scholz, D.K.; Anuta, P.E.; Momin, S.A. Change Detection in Coastal Zone Environments. Photogramm. Eng. Remote Sens. 1977, 43, 1533–1539. [Google Scholar]
- Belotelov, N.V.; Bogatyrev, B.G.; Kirilenko, A.P.; Venevsky, S.V. Modelling of time-dependent biome shifts under global climate changes. Ecol. Model. 1996, 87, 29–40. [Google Scholar] [CrossRef]
- Walther, G.R.; Post, E.; Convey, P.; Menzel, A.; Parmesan, C.; Beebee, T.J.C.; Fromentin, J.M.; Hoegh-Guldberg, O.; Bairlein, F. Ecological responses to recent climate change. Nature 2002, 416, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Walther, G.R. Community and ecosystem responses to recent climate change. Philos. Trans. R. Soc. B 2010, 365, 2019–2024. [Google Scholar] [CrossRef] [PubMed]
- Nolan, C.; Overpeck, J.T.; Allen, J.R.M.; Anderson, P.M.; Betancourt, J.L.; Binney, H.A.; Brewer, S.; Bush, M.B.; Chase, B.M.; Cheddadi, R.; et al. Past and future global transformation of terrestrial ecosystems under climate change. Science 2018, 361, 920–923. [Google Scholar] [CrossRef] [Green Version]
- Thomas, C.D.; Cameron, A.; Green, R.E.; Bakkenes, M.; Beaumont, L.J.; Collingham, Y.C.; Erasmus, B.F.N.; de Siqueira, M.F.; Grainger, A.; Hannah, L.; et al. Extinction risk from climate change. Nature 2004, 427, 145–148. [Google Scholar] [CrossRef]
- Dury, M.; Mertens, L.; Fayolle, A.; Verbeeck, H.; Hambuckers, A.; Francois, L. Refining Species Traits in a Dynamic Vegetation Model to Project the Impacts of Climate Change on Tropical Trees in Central Africa. Forests 2018, 9, 722. [Google Scholar] [CrossRef]
- Yu, M.; Wang, G.L.; Parr, D.; Ahmed, K.F. Future changes of the terrestrial ecosystem based on a dynamic vegetation model driven with RCP8.5 climate projections from 19 GCMs. Clim. Chang. 2014, 127, 257–271. [Google Scholar] [CrossRef]
- Han, Q.F.; Luo, G.P.; Li, C.F.; Li, S.B. Response of Carbon Dynamics to Climate Change Varied among Different Vegetation Types in Central Asia. Sustainability 2018, 10, 3288. [Google Scholar] [CrossRef]
- Yue, T.X.; Fan, Z.M.; Liu, J.Y. Changes of major terrestrial ecosystems in China since 1960. Glob. Planet. Chang. 2005, 48, 287–302. [Google Scholar] [CrossRef]
- He, Y.B.; Chen, Y.Q.; Tang, H.J.; Yao, Y.M.; Yang, P.; Chen, Z.X. Exploring spatial change and gravity center movement for ecosystem services value using a spatially explicit ecosystem services value index and gravity model. Environ. Monit. Assess. 2011, 175, 563–571. [Google Scholar] [CrossRef] [PubMed]
- Yue, T.X.; Fan, Z.M.; Liu, J.Y.; Wei, B.X. Scenarios of major terrestrial ecosystems in China. Ecol. Model. 2006, 199, 363–376. [Google Scholar] [CrossRef]
- Zhang, G.G.; Kang, Y.M.; Han, G.D.; Sakurai, K. Effect of climate change over the past half century on the distribution, extent and NPP of ecosystems of Inner Mongolia. Glob. Chang. Biol. 2011, 17, 377–389. [Google Scholar] [CrossRef]
- Van Vuuren, D.P.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, G.C.; Kram, T.; Krey, V.; Lamarque, J.F.; et al. The representative concentration pathways: An overview. Clim. Chang. 2011, 109, 5–31. [Google Scholar] [CrossRef]
- Yue, T.X. Surface Modeling: High Accuracy and High Speed Methods; CRC Press: New York, NY, USA, 2011. [Google Scholar]
- Fan, Z.M.; Yue, T.X.; Chen, C.F. Downscaling of global mean annual temperature under different scenarios. Prog. Geogr. 2012, 31, 267–274. (In Chinese) [Google Scholar]
- Yue, T.X.; Zhao, N.; Fan, Z.M.; Li, J.; Chen, C.F.; Lu, Y.M.; Wang, C.L.; Xu, B.; Wilson, J. CMIP5 downscaling and its uncertainty in China. Glob. Planet. Chang. 2016, 146, 30–37. [Google Scholar] [CrossRef]
- Shaw, G.; Wheeler, D. Statistical Techniques in Geographical Analysis; Wiley: Chichester West Sussex, UK; New York, NY, USA, 1985; p. 364. [Google Scholar]
- Hart, J.F. Central Tendency in Areal Distributions. Econo. Geogr. 1954, 30, 48–59. [Google Scholar] [CrossRef]
- Warntz, W.; Neft, D. Contributions to a statistical methodology for areal distributions. J. Reg. Sci. 1960, 2, 47–66. [Google Scholar] [CrossRef]
- Ebdon, D. Statistics in Geography: A Practical Approach; B. Blackwell: Oxford, UK, 1977; p. 195. [Google Scholar]
- Yue, T.X.; Fan, Z.M.; Liu, J.Y. Scenarios of Land cover in China. Glob. Planet. Chang. 2007, 55, 317–342. [Google Scholar] [CrossRef]
- Solomon, A.M.; Shugart, H. Vegetation Dynamics & Global Change; Springer Science & Business Media: Charlottesville, VA, USA, 1993. [Google Scholar]
- Chen, X.W.; Zhang, X.S.; Li, B.L. The possible response of life zones in China under global climate change. Glob. Planet. Chang. 2003, 38, 327–337. [Google Scholar] [CrossRef]
- Hickler, T.; Vohland, K.; Feehan, J.; Miller, P.A.; Smith, B.; Costa, L.; Giesecke, T.; Fronzek, S.; Carter, T.R.; Cramer, W.; et al. Projecting the future distribution of European potential natural vegetation zones with a generalized, tree species-based dynamic vegetation model. Glob. Ecol. Biogeogr. 2012, 21, 50–63. [Google Scholar] [CrossRef]
- Hui, D.; Deng, Q.; Tian, H.; Luo, Y. Climate Change and Carbon Sequestration in Forest Ecosystems. In Handbook of Climate Change Mitigation and Adaptation; Springer: Cham, Germany, 2017; pp. 555–594. [Google Scholar]
- Mayle, F.E.; Langstroth, R.P.; Fisher, R.A.; Mair, P. Long term savannah dynamics in the Bolivian Amazon: Implications for conservation. Philos. Trans. R. Soc. B 2007, 367, 291–307. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.J.; Wang, X.P.; Yang, T.B. Trend shifts in satellite-derived vegetation growth in Central Eurasia, 1982–2013. Sci. Total Environ. 2017, 579, 1658–1674. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Hu, Q.; Huang, W.; Ho, C.H.; Li, R.P.; Tang, Z.H. Projected climate regime shift under future global warming from multi-model, multi-scenario CMIP5 simulations. Glob. Planet. Chang. 2014, 112, 41–52. [Google Scholar] [CrossRef]
- Faour, G.; Mhawej, M.; Nasrallah, A. Global trends analysis of the main vegetation types throughout the past four decades. Appl. Geogr. 2018, 97, 184–195. [Google Scholar] [CrossRef]
- Fan, Z.M.; Fan, B.; Yue, T.X. Terrestrial ecosystem scenarios and their response to climate change in Eurasia. Sci. China Earth Sci. 2019, 62, 1–12. [Google Scholar] [CrossRef]
- Dyderski, M.K.; Paz, S.; Frelich, L.E.; Jagodzinski, A.M. How much does climate change threaten European forest tree species distributions? Glob. Chang. Biol. 2018, 24, 1150–1163. [Google Scholar] [CrossRef]
- Machar, I.; Vlckova, V.; Bucek, A.; Vozenilek, V.; Salek, L.; Jerabkova, L. Modelling of Climate Conditions in Forest Vegetation Zones as a Support Tool for Forest Management Strategy in European Beech Dominated Forests. Forests 2017, 8, 82. [Google Scholar] [CrossRef]
- Miao, L.J.; Liu, Q.; Fraser, R.; He, B.; Cui, X.F. Shifts in vegetation growth in response to multiple factors on the Mongolian Plateau from 1982 to 2011. Phys. Chem. Earth 2015, 87, 50–59. [Google Scholar] [CrossRef]
- Zhou, R.W.; Li, W.J.; Zhang, Y.P.; Peng, M.C.; Wang, C.Y.; Sha, L.Q.; Liu, Y.T.; Song, Q.H.; Fei, X.H.; Jin, Y.Q.; et al. Responses of the Carbon Storage and Sequestration Potential of Forest Vegetation to Temperature Increases in Yunnan Province, SW China. Forests 2018, 9, 227. [Google Scholar] [CrossRef]
- Weng, E.; Zhou, G. Modeling distribution changes of vegetation in China under future climate change. Environ. Model. Assess. 2006, 11, 45–58. [Google Scholar] [CrossRef]
- Yue, T.X.; Zhao, N.; Fan, Z.M.; Li, J.; Chen, C.F.; Lu, Y.M.; Wang, C.L.; Gao, J.; Xu, B.; Jiao, Y.M.; et al. Methods for simulating climate scenarios with improved spatiotemporal specificity and less uncertainty. Glob. Planet. Chang. 2019, 181, 102973. [Google Scholar] [CrossRef]
- Watson, R.T.; Zinyowera, M.C.; Moss, R.H. Climate Change 1995 Impacts, Adaptations and Mitigation of Climate Change: Scientific-Technical Analysis; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- Beck, H.E.; McVicar, T.R.; van Dijk, A.I.J.M.; Schellekens, J.; de Jeu, R.A.M.; Bruijnzeel, L.A. Global evaluation of four AVHRR–NDVI data sets: Intercomparison and assessment against Landsat imagery. Remote Sens. Environ. 2011, 115, 2547–2563. [Google Scholar] [CrossRef]
Sketch Map of the Shift Directions | Value | Shift Direction |
---|---|---|
| East | |
Northeast | ||
North | ||
Northwest | ||
West | ||
Southwest | ||
South | ||
Southeast |
Type | T0–T1 | T1–T2 | T2–T3 | |||
---|---|---|---|---|---|---|
Shift Distance | Shift Direction | Shift Distance | Shift Direction | Shift Distance | Shift Direction | |
Polar/Nival area | 198 | West | 239 | West | 261 | East |
Subpolar/Alpine dry tundra | 41 | Southwest | 185 | Southwest | 60 | Southwest |
Subpolar/Alpine moist tundra | 80 | South | 218 | Southwest | 454 | Southwest |
Subpolar/Alpine wet tundra | 425 | East | 95 | Northwest | 156 | West |
Subpolar/Alpine rain tundra | 158 | East | 201 | East | 193 | Southwest |
Cold temperate dry scrub | 115 | Southwest | 27 | Southwest | 100 | Northwest |
Cold temperate moist forest | 511 | Northeast | 272 | Northeast | 416 | Northeast |
Cold temperate wet forest | 265 | Northeast | 234 | East | 161 | Northeast |
Cold temperate rain forest | 212 | East | 204 | East | 99 | Southeast |
Cool temperate desert scrub | 114 | Northeast | 91 | East | 77 | Northeast |
Cool temperate steppe | 155 | Northeast | 176 | Northeast | 162 | Northeast |
Cool temperate moist forest | 515 | East | 298 | Northeast | 292 | Northeast |
Cool temperate wet forest | 239 | East | 286 | East | 389 | East |
Cool temperate rain forest | 6 | Southwest | 8 | Northeast | 17 | Northwest |
Warm temperate desert scrub | 195 | Northeast | 172 | Northeast | 155 | Northeast |
Warm temperate thorn steppe | 276 | Northeast | 175 | Northeast | 154 | Northeast |
Warm temperate dry forest | 309 | Northwest | 198 | Northwest | 250 | East |
Warm temperate moist forest | 451 | Northwest | 647 | West | 934 | West |
Warm temperate wet forest | 177 | Northwest | 107 | Northwest | 185 | West |
Subtropical desert scrub | 282 | Northwest | 218 | North | 166 | North |
Subtropical thorn woodland | 843 | Northwest | 496 | Northwest | 209 | Northwest |
Subtropical dry forest | 755 | Northwest | 639 | Northwest | 847 | West |
Subtropical moist forest | 597 | Northwest | 271 | North | 165 | Northeast |
Subtropical wet forest | 524 | Northeast | 475 | Northwest | 548 | Northwest |
Subtropical rain forest | 116 | Northeast | 127 | East | 0 | East |
Tropical desert scrub | 63 | North | 55 | North | 109 | West |
Tropical thorn woodland | 52 | Northwest | 40 | Southwest | 78 | West |
Tropical very dry forest | 35 | Northwest | 46 | Northwest | 40 | Northwest |
Tropical dry forest | 239 | East | 58 | North | 32 | Northwest |
Tropical moist forest | 62 | East | 25 | Northeast | 130 | Northwest |
Tropical wet forest | 93 | Northeast | 71 | East | 78 | East |
Desert | 64 | West | 118 | Southwest | 32 | West |
Type | T0–T1 | T1–T2 | T2–T3 | |||
---|---|---|---|---|---|---|
Shift Distance | Shift Direction | Shift Distance | Shift Direction | Shift Distance | Shift Direction | |
Polar/Nival area | 178 | West | 283 | West | 720 | Northeast |
Subpolar/Alpine dry tundra | 142 | Southwest | 92 | Southwest | 74 | West |
Subpolar/Alpine moist tundra | 94 | Southeast | 270 | Southwest | 2031 | Southwest |
Subpolar/Alpine wet tundra | 388 | East | 53 | Southeast | 394 | West |
Subpolar/Alpine rain tundra | 255 | East | 166 | Southeast | 119 | Southwest |
Cold temperate dry scrub | 147 | Southwest | 30 | West | 167 | West |
Cold temperate moist forest | 549 | Northeast | 358 | Northeast | 370 | Northeast |
Cold temperate wet forest | 217 | Northeast | 340 | East | 322 | East |
Cold temperate rain forest | 190 | East | 301 | East | 209 | Northeast |
Cool temperate desert scrub | 191 | East | 101 | Northeast | 172 | East |
Cool temperate steppe | 186 | Northeast | 231 | Northeast | 567 | East |
Cool temperate moist forest | 328 | Northeast | 469 | East | 574 | Northeast |
Cool temperate wet forest | 215 | East | 717 | East | 1050 | East |
Cool temperate rain forest | 17 | Southwest | 4 | North | 70 | North |
Warm temperate desert scrub | 285 | Northeast | 211 | Northeast | 330 | East |
Warm temperate thorn steppe | 295 | Northeast | 235 | Northeast | 229 | Northeast |
Warm temperate dry forest | 141 | Northwest | 375 | West | 363 | Northwest |
Warm temperate moist forest | 307 | Northwest | 912 | West | 789 | Northwest |
Warm temperate wet forest | 47 | Northwest | 244 | Northwest | 147 | North |
Subtropical desert scrub | 243 | Northwest | 327 | North | 270 | Northwest |
Subtropical thorn woodland | 595 | Northwest | 654 | Northwest | 492 | Northwest |
Subtropical dry forest | 423 | Northwest | 840 | Northwest | 921 | West |
Subtropical moist forest | 488 | Northwest | 336 | Northeast | 274 | Northeast |
Subtropical wet forest | 235 | Northeast | 765 | North | 368 | Northwest |
Subtropical rain forest | 190 | Northeast | 52 | Southeast | 21 | Southeast |
Tropical desert scrub | 105 | Northwest | 63 | West | 102 | Northwest |
Tropical thorn woodland | 85 | Northwest | 38 | Southwest | 129 | West |
Tropical very dry forest | 40 | Northwest | 57 | North | 52 | Northwest |
Tropical dry forest | 108 | East | 162 | East | 185 | Northwest |
Tropical moist forest | 95 | Southeast | 83 | Northwest | 238 | Northwest |
Tropical wet forest | 167 | East | 34 | East | 63 | East |
Desert | 114 | Southwest | 56 | West | 61 | Northwest |
Type | T0–T1 | T1–T2 | T2–T3 | |||
---|---|---|---|---|---|---|
Shift Distance | Shift Direction | Shift Distance | Shift Direction | Shift Distance | Shift Direction | |
Polar/Nival area | 162 | West | 236 | Northwest | 908 | Northeast |
Subpolar/Alpine dry tundra | 61 | South | 298 | West | 72 | West |
Subpolar/Alpine moist tundra | 165 | Southwest | 627 | Southwest | 3072 | Southwest |
Subpolar/Alpine wet tundra | 339 | East | 59 | East | 140 | West |
Subpolar/Alpine rain tundra | 285 | East | 195 | Southeast | 343 | West |
Cold temperate dry scrub | 118 | Southwest | 99 | West | 183 | West |
Cold temperate moist forest | 509 | Northeast | 668 | Northeast | 329 | Northeast |
Cold temperate wet forest | 219 | Northeast | 319 | East | 490 | East |
Cold temperate rain forest | 248 | East | 236 | East | 328 | East |
Cool temperate desert scrub | 181 | East | 202 | East | 265 | East |
Cool temperate steppe | 149 | Northeast | 366 | Northeast | 498 | Northeast |
Cool temperate moist forest | 378 | Northeast | 635 | Northeast | 713 | Northeast |
Cool temperate wet forest | 404 | East | 879 | East | 905 | East |
Cool temperate rain forest | 12 | Southwest | 15 | North | 168 | Northwest |
Warm temperate desert scrub | 284 | Northeast | 286 | East | 508 | East |
Warm temperate thorn steppe | 310 | Northeast | 274 | Northeast | 419 | Northeast |
Warm temperate dry forest | 112 | Northwest | 642 | Northwest | 387 | North |
Warm temperate moist forest | 377 | West | 1263 | West | 648 | Northwest |
Warm temperate wet forest | 77 | Northwest | 170 | Northwest | 360 | West |
Subtropical desert scrub | 304 | Northwest | 416 | North | 313 | North |
Subtropical thorn woodland | 834 | West | 634 | Northwest | 392 | Northwest |
Subtropical dry forest | 327 | Northwest | 1137 | West | 1250 | Northwest |
Subtropical moist forest | 446 | Northwest | 468 | North | 305 | Northeast |
Subtropical wet forest | 473 | Northeast | 940 | North | 593 | Northwest |
Subtropical rain forest | 274 | Southeast | 242 | East | 198 | East |
Tropical desert scrub | 33 | Northeast | 275 | West | 137 | Northwest |
Tropical thorn woodland | 122 | Southeast | 327 | Northwest | 201 | West |
Tropical very dry forest | 9 | Northwest | 161 | Northwest | 29 | West |
Tropical dry forest | 242 | East | 195 | Northwest | 95 | Northwest |
Tropical moist forest | 86 | East | 183 | Northwest | 285 | Northwest |
Tropical wet forest | 95 | Northeast | 87 | Northeast | 258 | East |
Desert | 137 | Southwest | 96 | Northwest | 72 | Northwest |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, Z.; Fan, B. Shifts of the Mean Centers of Potential Vegetation Ecosystems under Future Climate Change in Eurasia. Forests 2019, 10, 873. https://doi.org/10.3390/f10100873
Fan Z, Fan B. Shifts of the Mean Centers of Potential Vegetation Ecosystems under Future Climate Change in Eurasia. Forests. 2019; 10(10):873. https://doi.org/10.3390/f10100873
Chicago/Turabian StyleFan, Zemeng, and Bin Fan. 2019. "Shifts of the Mean Centers of Potential Vegetation Ecosystems under Future Climate Change in Eurasia" Forests 10, no. 10: 873. https://doi.org/10.3390/f10100873
APA StyleFan, Z., & Fan, B. (2019). Shifts of the Mean Centers of Potential Vegetation Ecosystems under Future Climate Change in Eurasia. Forests, 10(10), 873. https://doi.org/10.3390/f10100873