Phenological and Temperature Controls on the Temporal Non-Structural Carbohydrate Dynamics of Populus grandidentata and Quercus rubra
Abstract
:1. Introduction
2. Experimental Methods
2.1. Site Description
2.2. Plant tissue collection
2.3. Starch and soluble sugar quantification
2.4. Gross and net primary production initiation and cessation
2.5. Thermal degree days
2.6. Statistical analyses
3. Results
3.1. Sugar and starch concentrations by species, tissues, and over time
3.2. Gross and net primary production, and seasonal non-structural carbohydrates dynamics
Parameter | d.f. | F | P |
Replicate | 2 | 2.41 | 0.0989 |
Species | 1 | 383.31 | 0.0026 |
Tissue | 3 | 215.48 | <0.0001 |
Time | 10 | 10.36 | <0.0001 |
Species x Tissue | 3 | 189.60 | <0.0001 |
Species x Time | 10 | 19.57 | <0.0001 |
Tissue x Time | 30 | 22.19 | <0.0001 |
Species x Tissue x Time | 28 | 6.60 | <0.0001 |
3.3. Temperature and the timing of canopy carbon cycling processes
3.4. Simulated changes in tissue NSC with warming temperatures
4. Discussion
5. Conclusions
Acknowledgements
References and Notes
- Sampson, D.A.; Johnsen, K.H.; Ludovici, K.H.; Albaugh, T.J.; Maier, C.A. Stand-scale correspondence in empirical and simulated labile carbohydrates in loblolly pine. Forest Sci. 2001, 47, 60–68. [Google Scholar]
- Hoch, G.; Richter, A.; Körner, C. Non-structural carbon compounds in temperate forest trees. Plant Cell Environ. 2003, 26, 1067–1081. [Google Scholar] [CrossRef]
- Legros, S.; Mialet-Serra, I.; Clement-Vidal, A.; Caliman, J.P.; Siregar, F.A.; Fabre, D.; Dingkuhn, M. Role of transitory carbon reserves during adjustment to climate variability and source-sink imbalances in oil palm (Elaeis guineensis). Tree Physiol. 2009, 29, 1199–1211. [Google Scholar] [CrossRef] [PubMed]
- Barbaroux, C.; Breda, N.; Dufrene, E. Distribution of above-ground and below-ground carbohydrate reserves in adult trees of two contrasting broad-leaved species (Quercus petraea and Fagus sylvatica). New Phytol. 2003, 157, 605–615. [Google Scholar] [CrossRef]
- Körner, C. Carbon limitation in trees. J. Ecol. 2003, 91, 4–17. [Google Scholar] [CrossRef]
- Landhausser, S.M.; Lieffers, V.J. Seasonal changes in carbohydrate reserves in mature northern Populus tremuloides clones. Trees-Struct. Funct. 2003, 17, 471–476. [Google Scholar] [CrossRef]
- Wong, B.L.; Baggett, K.L.; Rye, A.H. Seasonal patterns of reserve and soluble carbohydrates in mature sugar maple (Acer saccharum). Can. J. Bot. 2003, 81, 780–788. [Google Scholar] [CrossRef]
- Keel, S.G.; Siegwolf, R.T.W.; Körner, C. Canopy CO2 enrichment permits tracing the fate of recently assimilated carbon in a mature deciduous forest. New Phytol. 2006, 172, 319–329. [Google Scholar] [CrossRef] [PubMed]
- Chantuma, P.; Lacointe, A.; Kasemsap, P.; Thanisawanyangkura, S.; Gohet, E.; Clement, A.; Guilliot, A.; Ameglio, T.; Thaler, P. Carbohydrate storage in wood and bark of rubber trees submitted to different level of C demand induced by latex tapping. Tree Physiol. 2009, 29, 1021–1031. [Google Scholar] [CrossRef] [PubMed]
- Bansal, S.; Germino, M.J. Temporal variation of nonstructural carbohydrates in montane conifers: similarities and differences among developmental stages, species and environmental conditions. Tree Physiol. 2009, 29, 559–568. [Google Scholar] [CrossRef] [PubMed]
- Spann, T.M.; Beede, R.H.; Dejong, T.M. Seasonal carbohydrate storage and mobilization in bearing and non-bearing pistachio (Pistacia vera) trees. Tree Physiol. 2008, 28, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Schädel, C.; Blochl, A.; Richter, A.; Hoch, G. Short-term dynamics of nonstructural carbohydrates and hemicelluloses in young branches of temperate forest trees during bud break. Tree Physiol. 2009, 29, 901–911. [Google Scholar] [CrossRef] [PubMed]
- Zweifel, R.; Zimmermann, L.; Zeugin, F.; Newbery, D.M. Intra-annual radial growth and water relations of trees: implications towards a growth mechanism. J. Exp. Bot. 2006, 57, 1445–1459. [Google Scholar] [CrossRef] [PubMed]
- Gholz, H.L.; Cropper, W.P. Carbohydrate dynamics in mature Pinus elliotti var elliottii trees. Can. J. For. Res. 1991, 21, 1742–1747. [Google Scholar] [CrossRef]
- Johansson, T. Seasonal-changes in contents of root starch and soluble carbohydrates in 4-6-year old Betula pubescens and Populus tremula. Scand. J. Forest. Res. 1993, 8, 94–106. [Google Scholar] [CrossRef]
- Piispanen, R.; Saranpää, P. Variation of non-structural carbohydrates in silver birch (Betula pendula Roth) wood. Trees-Struct. Funct. 2001, 15, 444–451. [Google Scholar] [CrossRef]
- Hansen, J.; Beck, E. Seasonal changes in the utilization and turnover of assimilation products in 8-year-old Scots pine (Pinus sylvestris L) trees. Trees-Struct. Funct. 1994, 8, 172–182. [Google Scholar] [CrossRef]
- Gough, C.M.; Flower, C.E.; Vogel, C.S.; Dragoni, D.; Curtis, P.S. Whole-ecosystem labile carbon production in a north temperate deciduous forest. Agr. Forest Meteorol. 2009, 149, 1531–1540. [Google Scholar] [CrossRef]
- Parmesan, C.; Yohe, G.A. Globally coherent fingerprint of climate change impacts across natural systems. Nature 2003, 421, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Bradley, N.L.; Leopold, A.C.; Ross, J.; Huffaker, W. Phenological changes reflect climate change in Wisconsin. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 9701–9704. [Google Scholar] [CrossRef] [PubMed]
- Piao, S.L.; Friedlingstein, P.; Ciais, P.; Viovy, N.; Demarty, J. Growing season extension and its impact on terrestrial carbon cycle in the Northern Hemisphere over the past 2 decades. Global Biogeochem. Cycles 2007, 21, GB2013. [Google Scholar]
- White, M.A.; Thornton, P.E.; Running, S.W. A continental phenology model for monitoring vegetation responses to interannual climatic variability. Global Biogeochem. Cycles 1997, 11, 217–234. [Google Scholar] [CrossRef]
- Tucker, C.J.; Slayback, D.A.; Pinzon, J.E.; Los, S.O.; Myneni, R.B.; Taylor, M.G. Higher northern latitude normalized difference vegetation index and growing season trends from 1982 to 1999. Int. J. Biometeorol. 2001, 45, 184–190. [Google Scholar] [CrossRef]
- Regier, N.; Streb, S.; Cocozza, C.; Schaub, M.; Cherubini, P.; Zeeman, S.C.; Frey, B. Drought tolerance of two black poplar (Populus nigra L.) clones: contribution of carbohydrates and oxidative stress defence. Plant Cell Environ. 2009, 32, 1724–1736. [Google Scholar] [CrossRef] [PubMed]
- Damour, G.; Vandame, M.; Urban, L. Long-term drought modifies the fundamental relationships between light exposure, leaf nitrogen content and photosynthetic capacity in leaves of the lychee tree (Litchi chinensis). J. Plant Physiol. 2008, 165, 1370–1378. [Google Scholar] [CrossRef] [PubMed]
- Correia, M.J.; Osorio, M.L.; Osorio, J.; Barrote, I.; Martins, M.; David, M.M. Influence of transient shade periods on the effects of drought on photosynthesis, carbohydrate accumulation and lipid peroxidation in sunflower leaves. Environ. Exp. Bot. 2006, 58, 75–84. [Google Scholar] [CrossRef]
- Palacio, S.; Hester, A.J.; Maestro, M.; Millard, P. Browsed Betula pubescens trees are not carbon-limited. Funct. Ecol. 2008, 22, 808–815. [Google Scholar] [CrossRef] [Green Version]
- Luostarinen, K.; Kauppi, A. Effects of coppicing on the root and stump carbohydrate dynamics in birches. New Forest. 2005, 29, 289–303. [Google Scholar] [CrossRef]
- Landhausser, S.M.; Lieffers, V.J. Leaf area renewal, root retention and carbohydrate reserves in a clonal tree species following above-ground disturbance. J. Ecol. 2002, 90, 658–665. [Google Scholar] [CrossRef]
- VanderKlein, D.W.; Reich, P.B. The effect of defoliation intensity and history on photosynthesis, growth and carbon reserves of two conifers with contrasting leaf lifespans and growth habits. New Phytol. 1999, 144, 121–132. [Google Scholar] [CrossRef]
- Li, M.H.; Hoch, G.; Körner, C. Source/sink removal affects mobile carbohydrates in Pinus cembra at the Swiss treeline. Trees-Struct. Funct. 2002, 16, 331–337. [Google Scholar]
- Körner, C.; Miglietta, F. Long-term effects of naturally elevated CO2 on mediterranean grassland and forest trees. Oecologia 1994, 99, 343–351. [Google Scholar] [CrossRef]
- Gough, C.M.; Vogel, C.S.; Harrold, K.H.; George, K.; Curtis, P.S. The legacy of harvest and fire on ecosystem carbon storage in a north temperate forest. Global Change Biol. 2007, 13, 1935–1949. [Google Scholar] [CrossRef]
- Jones, M.G.K.; Outlaw, W.H.; Lowry, O.H. Enzymic assay of 10-7 to 10-14 moles of sucrose in plant-tissues. Plant Physiol. 1977, 60, 379–383. [Google Scholar] [CrossRef] [PubMed]
- Curtis, P.S.; Vogel, C.S.; Wang, X.Z.; Pregitzer, K.S.; Zak, D.R.; Lussenhop, J.; Kubiske, M.; Teeri, J.A. Gas exchange, leaf nitrogen, and growth efficiency of Populus tremuloides in a CO2-enriched atmosphere. Ecol. Appl. 2000, 10, 3–17. [Google Scholar]
- Gough, C.M.; Vogel, C.S.; Schmid, H.P.; Su, H.B.; Curtis, P.S. Multi-year convergence of biometric and meteorological estimates of forest carbon storage. Agr. Forest Meteorol. 2008, 148, 158–170. [Google Scholar] [CrossRef]
- Curtis, P.S.; Vogel, C.S.; Gough, C.M.; Schmid, H.P.; Su, H.B.; Bovard, B.D. Respiratory carbon losses and the carbon-use efficiency of a northern hardwood forest, 1999-2003. New Phytol. 2005, 167, 437–455. [Google Scholar] [CrossRef] [PubMed]
- Schmid, H.P.; Su, H.B.; Vogel, C.S.; Curtis, P.S. Ecosystem-atmosphere exchange of carbon dioxide over a mixed hardwood forest in northern lower Michigan. J. Geophys. Res.-Atmos. 2003, 108, (D14). [Google Scholar]
- Richardson, A.D.; Bailey, A.S.; Denny, E.G.; Martin, C.W.; O'Keefe, J. Phenology of a northern hardwood forest canopy. Global Change Biol. 2006, 12, 1174–1188. [Google Scholar] [CrossRef]
- Gough, C.M.; Vogel, C.S.; Schmid, H.P.; Curtis, P.S. Controls on annual forest carbon storage: Lessons from the past and predictions for the future. Bioscience 2008, 58, 609–622. [Google Scholar] [CrossRef]
- Tjoelker, M.G.; Oleksyn, J.; Lorenc-Plucinska, G.; Reich, P.B. Acclimation of respiratory temperature responses in northern and southern populations of Pinus banksiana. New Phytol. 2009, 181, 218–229. [Google Scholar] [CrossRef] [PubMed]
- Atkin, O.K.; Edwards, E.J.; Loveys, B.R. Response of root respiration to changes in temperature and its relevance to global warming. New Phytol. 2000, 147, 141–154. [Google Scholar] [CrossRef]
- Atkin, O.K.; Tjoelker, M.G. Thermal acclimation and the dynamic response of plant respiration to temperature. Trends Plant Sci. 2003, 8, 343–351. [Google Scholar] [CrossRef] [PubMed]
- Hoch, G.; Körner, C. Growth and carbon relations of tree line forming conifers at constant vs. variable low temperatures. J. Ecol. 2009, 97, 57–66. [Google Scholar] [CrossRef]
- Overdieck, D.; Fenselau, K. Elevated CO2 concentration and temperature effects on the partitioning of chemical components along juvenile Scots pine stems (Pinus sylvestris L.). Trees-Struct. Funct. 2009, 23, 771–786. [Google Scholar] [CrossRef]
- Palacio, S.; Maestro, M.; Montserrat-Marti, G. Seasonal dynamics of non-structural carbohydrates in two species of mediterranean sub-shrubs with different leaf phenology. Environ. Exp. Bot. 2007, 59, 34–42. [Google Scholar] [CrossRef]
- Kinney, K.K.; Lindroth, R.L.; Jung, S.M.; Nordheim, E.V. Effects of CO2 and NO3- availability on deciduous trees: Phytochemistry and insect performance. Ecology 1997, 78, 215–230. [Google Scholar]
- Bezemer, T.M.; Jones, T.H. Plant-insect herbivore interactions in elevated atmospheric CO2: quantitative analyses and guild effects. Oikos 1998, 82, 212–222. [Google Scholar] [CrossRef]
- Goicoechea, N.; Closa, I.; de Miguel, A.M. Ectomycorrhizal communities within beech (Fagus sylvatica L.) forests that naturally regenerate from clear-cutting in northern Spain. New Forest. 2009, 38, 157–175. [Google Scholar] [CrossRef]
- Loewe, A.; Einig, W.; Shi, L.; Dizengremel, P.; Hampp, R. Mycorrhiza formation and elevated CO2 both increase the capacity for sucrose synthesis in source leaves of spruce and aspen. New Phytol. 2000, 145, 565–574. [Google Scholar] [CrossRef]
- Barbehenn, R. V.; Karowe, D. N.; Spickard, A. Effects of elevated atmospheric CO2 on the nutritional ecology of C-3 and C-4 grass-feeding caterpillars. Oecologia 2004, 140, 86–95. [Google Scholar] [CrossRef] [PubMed]
- Roth, S.K.; Lindroth, R.L. Effects of CO2-mediated changes in paper birch and white pine chemistry on gypsy-moth performance. Oecologia 1994, 98, 133–138. [Google Scholar] [CrossRef]
- Brunt, C.; Read, J.; Sanson, G.D. Changes in resource concentration and defence during leaf development in a tough-leaved (Nothofagus moorei) and soft-leaved (Toona ciliata) species. Oecologia 2006, 148, 583–592. [Google Scholar] [CrossRef] [PubMed]
- Heide, O.M. Daylength and thermal time responses of budburst during dormancy release in some northern deciduous trees. Physiol. Plant. 1993, 88, 531–540. [Google Scholar] [CrossRef]
- Heide, O.M.; Prestrud, A.K. Low temperature, but not photoperiod, controls growth cessation and dormancy induction and release in apple and pear. Tree Physiol. 2005, 25, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Heide, O.M. Interaction of photoperiod and temperature in the control of growth and dormancy of Prunus species. Sci. Hortic. 2008, 115, 309–314. [Google Scholar] [CrossRef]
- Krishnan, P.; Black, T.A.; Grant, N.J.; Barr, A.G.; Hogg, E.T.H.; Jassal, R.S.; Morgenstern, K. Impact of changing soil moisture distribution on net ecosystem productivity of a boreal aspen forest during and following drought. Agr. Forest Meteorol. 2006, 139, 208–223. [Google Scholar] [CrossRef]
- Barbaroux, C.; Breda, N. Contrasting distribution and seasonal dynamics of carbohydrate reserves in stem wood of adult ring-porous sessile oak and diffuse-porous beech trees. Tree Physiol. 2002, 22, 1201–1210. [Google Scholar] [CrossRef] [PubMed]
- Bolstad, P.V.; Reich, P.; Lee, T. Rapid temperature acclimation of leaf respiration rates in Quercus alba and Quercus rubra. Tree Physiol. 2003, 23, 969–976. [Google Scholar] [CrossRef] [PubMed]
© 2010 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an Open Access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Gough, C.M.; Flower, C.E.; Vogel, C.S.; Curtis, P.S. Phenological and Temperature Controls on the Temporal Non-Structural Carbohydrate Dynamics of Populus grandidentata and Quercus rubra. Forests 2010, 1, 65-81. https://doi.org/10.3390/f1010065
Gough CM, Flower CE, Vogel CS, Curtis PS. Phenological and Temperature Controls on the Temporal Non-Structural Carbohydrate Dynamics of Populus grandidentata and Quercus rubra. Forests. 2010; 1(1):65-81. https://doi.org/10.3390/f1010065
Chicago/Turabian StyleGough, Christopher M., Charles E. Flower, Christoph S. Vogel, and Peter S. Curtis. 2010. "Phenological and Temperature Controls on the Temporal Non-Structural Carbohydrate Dynamics of Populus grandidentata and Quercus rubra" Forests 1, no. 1: 65-81. https://doi.org/10.3390/f1010065
APA StyleGough, C. M., Flower, C. E., Vogel, C. S., & Curtis, P. S. (2010). Phenological and Temperature Controls on the Temporal Non-Structural Carbohydrate Dynamics of Populus grandidentata and Quercus rubra. Forests, 1(1), 65-81. https://doi.org/10.3390/f1010065