Local Convergence of an Optimal Eighth Order Method under Weak Conditions
Abstract
:1. Introduction
2. Local Convergence
- (a)
- In view of Equation (12) and the estimate:
- (b)
- (c)
- The radius was shown in [2,3] to be the convergence radius for Newton’s method Equation (2) under conditions Equations (11) and (13). It follows from Equation (4) and the definition of that the convergence radius r of Method (3) cannot be larger than the convergence radius of the second order Newton’s method (2). As already noted that is at least as the convergence ball given by Rheinboldt [15]:That is our convergence ball that is at most three times larger than Rheinboldt’s. The same value for is given by Traub [4].
- (d)
- It is worth noticing that Method (3) is not changing if we use the conditions of Theorem 2.1 instead of the stronger conditions given in [1]. Moreover, for the error bounds, in practice, we can use the computational order of convergence (COC) [16]:
3. Numerical Example and Applications
Author Contributions
Conflicts of Interest
References
- Chen, Y.; Wang, Y.; Tan, D. A family of three-step iterative methods with eighth-order convergence for nonlinear equations. Appl. Math. Comput. 2015. [Google Scholar] [CrossRef]
- Argyros, I.K. Convergence and Application of Newton-Type Iterations; Springer: New York, NY, USA, 2008. [Google Scholar]
- Argyros, I.K.; Hilout, S. Numerical Methods in Nonlinear Analysis; World Scientific Publishing Company: Hackensack, NJ, USA, 2013. [Google Scholar]
- Traub, J.F. Iterative Methods for the Solution of Equations; Prentice-Hall Series in Automatic Computation: Englewood Cliffs, NJ, USA, 1964. [Google Scholar]
- Magreñán, Á.A. Different anomalies in a Jarratt family of iterative root–finding methods. Appl. Math. Comput. 2014, 233, 29–38. [Google Scholar] [CrossRef]
- Magreñán, Á.A. A new tool to study real dynamics: The convergence plane. Appl. Math. Comput. 2014, 248, 215–224. [Google Scholar] [CrossRef]
- Petkovic, M.S.; Neta, B.; Petkovic, L.; Džunič, J. Multipoint Methods for Solving Nonlinear Equations; Elsevier: Waltham, MA, USA, 2013. [Google Scholar]
- Herceg, D.; Herceg, D.J. Means based modifications of Newton’s method for solving nonlinear equations. Appl. Math. Comput. 2013, 219, 6126–6133. [Google Scholar] [CrossRef]
- Herceg, D.; Herceg, D. Third-order modifications of Newton’s method based on Stolarsky and Gini means. J. Comput. Appl. Math. 2013, 245, 53–61. [Google Scholar] [CrossRef]
- Homeier, H.H.H. On Newton-type methods with cubic convergence. J. Comput. Appl. Math. 2005, 176, 425–432. [Google Scholar] [CrossRef]
- Ozban, A.Y. Some new variants of Newton’s method. Appl. Math. Lett. 2004, 17, 677–682. [Google Scholar] [CrossRef]
- Weerakoon, S.; Fernando, T.G.I. A variant of Newton’s method with accelerated third order convergence. Appl. Math. Lett. 2000, 13, 87–93. [Google Scholar] [CrossRef]
- Amat, S.; Hernández, M.A.; Romero, N. A modified Chebyshev’s iterative method with at least sixth order of convergence. Appl. Math. Comput. 2008, 206, 164–174. [Google Scholar] [CrossRef]
- Li, D.; Liu, P.; Kou, J. An improvement of the Chebyshev–Halley methods free from second derivative. Appl. Math. Comput. 2014, 235, 221–225. [Google Scholar] [CrossRef]
- Rheinboldt, W.C. An Adaptive Continuation Process for Solving Systems of Nonlinear Equations. Available online: https://eudml.org/doc/208686 (accessed on 11 August 2015).
- Grau-Sánchez, M.; Noguera, M.; Gutiérrez, J.M. On some computational orders of convergence. Appl. Math. Lett. 2010, 23, 472–478. [Google Scholar] [CrossRef]
- Amat, S.; Busquier, S.; Plaza, S. Dynamics of the King and Jarratt iterations. Aequationes Math. 2005, 69, 212–223. [Google Scholar] [CrossRef]
- Amat, S.; Busquier, S.; Plaza, S. Chaotic dynamics of a third-order Newton-type method. J. Math. Anal. Appl. 2010, 366, 24–32. [Google Scholar] [CrossRef]
- Candela, V.; Marquina, A. Recurrence relations for rational cubic methods I: The Halley method. Computing 1990, 44, 169–184. [Google Scholar] [CrossRef]
- Chicharro, F.; Cordero, A.; Torregrosa, J.R. Drawing dynamical and parameters planes of iterative families and methods. Sci. World J. 2013, 2013. [Google Scholar] [CrossRef] [PubMed]
- Chun, C. Some improvements of Jarratt’s method with sixth-order convergence. Appl. Math. Comput. 2007, 190, 1432–1437. [Google Scholar] [CrossRef]
- Cordero, A.; García-Maimó, J.; Torregrosa, J.R.; Vassileva, M.P.; Vindel, P. Chaos in King’s iterative family. Appl. Math. Lett. 2013, 26, 842–848. [Google Scholar] [CrossRef]
- Cordero, A.; Torregrosa, J.R.; Vindel, P. Dynamics of a family of Chebyshev-Halley type methods. Appl. Math. Comput. 2013, 219, 8568–8583. [Google Scholar] [CrossRef]
- Cordero, A.; Torregrosa, J.R. Variants of Newton’s method using fifth-order quadrature formulas. Appl. Math. Comput. 2007, 190, 686–698. [Google Scholar] [CrossRef]
- Ezquerro, J.A.; Hernández, J.A. New iterations of R-order four with reduced computational cost. BIT Numer. Math. 2009, 49, 325–342. [Google Scholar] [CrossRef]
- Ezquerro, J.A.; Hernández, M.A. On the R-order of the Halley method. J. Math. Anal. Appl. 2005, 303, 591–601. [Google Scholar] [CrossRef]
- Gutiérrez, J.A.; Hernández, M.A. Recurrence relations for the super-Halley method. Comput. Math. Appl. 1998, 36, 1–8. [Google Scholar] [CrossRef]
- Hernández, M.A. Chebyshev’s approximation algorithms and applications. Comput. Math. Appl. 2001, 41, 433–455. [Google Scholar] [CrossRef]
- Hernández, M.A.; Salanova, M.A. Sufficient conditions for semilocal convergence of a fourth order multipoint iterative method for solving equations in Banach spaces. Southwest J. Pure Appl. Math. 1999, 1, 29–40. [Google Scholar]
- Herceg, D.; Herceg, D. Sixth-order modifications of Newton’s method based on Stolarsky and Gini means. J. Comput. Appl. Math. 2014, 267, 244–253. [Google Scholar] [CrossRef]
- Jarratt, P. Some fourth order multipoint methods for solving equations. Math. Comput. 1966, 20, 434–437. [Google Scholar] [CrossRef]
- Kou, J.; Wang, X. Semilocal convergence of a modified multi-point Jarratt method in Banach spaces under general continuity conditions. Numer. Algor. 2012, 60, 369–390. [Google Scholar]
- Kou, J. On Chebyshev–Halley methods with sixth-order convergence for solving non-linear equations. Appl. Math. Comput. 2007, 190, 126–131. [Google Scholar] [CrossRef]
- Kou, J.; Li, Y.; Wang, X. Third-order modification of Newton’s method. J. Comput. Appl. Math. 2007, 205, 1–5. [Google Scholar]
- Lukić, T.; Ralević, N.M. Geometric mean Newton’s method for simple and multiple roots. Appl. Math. Lett. 2008, 21, 30–36. [Google Scholar] [CrossRef]
- Neta, B. A sixth order family of methods for nonlinear equations. Int. J. Comput. Math. 1979, 7, 157–161. [Google Scholar] [CrossRef]
- Parhi, S.K.; Gupta, D.K. Recurrence relations for a Newton-like method in Banach spaces. J. Comput. Appl. Math. 2007, 206, 873–887. [Google Scholar]
- Parhi, S.K.; Gupta, D.K. A sixth order method for nonlinear equations. Appl. Math. Comput. 2008, 203, 50–55. [Google Scholar] [CrossRef]
- Ren, H.; Wu, Q.; Bi, W. New variants of Jarratt’s method with sixth-order convergence. Numer. Algor. 2009, 52, 585–603. [Google Scholar] [CrossRef]
- Wang, X.; Kou, J.; Gu, C. Semilocal convergence of a sixth-order Jarratt method in Banach spaces. Numer. Algor. 2011, 57, 441–456. [Google Scholar] [CrossRef]
- Zhou, X. A class of Newton’s methods with third-order convergence. Appl. Math. Lett. 2007, 20, 1026–1030. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Argyros, I.K.; Behl, R.; Motsa, S.S. Local Convergence of an Optimal Eighth Order Method under Weak Conditions. Algorithms 2015, 8, 645-655. https://doi.org/10.3390/a8030645
Argyros IK, Behl R, Motsa SS. Local Convergence of an Optimal Eighth Order Method under Weak Conditions. Algorithms. 2015; 8(3):645-655. https://doi.org/10.3390/a8030645
Chicago/Turabian StyleArgyros, Ioannis K., Ramandeep Behl, and S.S. Motsa. 2015. "Local Convergence of an Optimal Eighth Order Method under Weak Conditions" Algorithms 8, no. 3: 645-655. https://doi.org/10.3390/a8030645
APA StyleArgyros, I. K., Behl, R., & Motsa, S. S. (2015). Local Convergence of an Optimal Eighth Order Method under Weak Conditions. Algorithms, 8(3), 645-655. https://doi.org/10.3390/a8030645