Base Oils Biodegradability Prediction with Data Mining Techniques
Abstract
:1. Introduction
2. Literature Review
3. Modeling Methodology
4. Results and Comparative Analysis
Method | Average | Max | ||||
---|---|---|---|---|---|---|
Low-B | High-B | All | Low-B | High-B | All | |
Trained MLR | 30.9 | 27.6 | 29.9 | 88.6 | 52.7 | 88.6 |
LOOCV MLR | 21.5 | 6.1 | 13.8 | 70.1 | 21.2 | 70.1 |
LOOCV K-NN MLR | 22.1 | 6.6 | 14.2 | 79.2 | 25.7 | 79.2 |
LOOCV ANN | 22.9 | 7.1 | 16.1 | 87.2 | 27.0 | 87.2 |
LOOCV Continuous MBR | 10.6 | 37.5 | 23.8 | 47.6 | 146.5 | 146.5 |
LOOCV CART | 24.8 | 11.1 | 17.8 | 66.6 | 30.8 | 66.6 |
Basu-ANN | 26.2 | 9.2 | 17.4 | 133.64 | 24.7 | 133.5 |
4.1.Continuous biodegradability models
4.2. Discretized biodegradability results derived from continuous models
Technique | Low-B | High-B | All |
---|---|---|---|
Trained MLR | 5.8 | 12.2 | 8.0 |
LOOCV MLR | 3.3 | 9.3 | 6.3 |
LOOCV NN-MLR | 0.0 | 9.3 | 4.7 |
LOOCV ANN | 3.2 | 6.2 | 4.7 |
LOOCV Continuous MBR | 9.6 | 3.1 | 6.3 |
LOOCV CART | 9.6 | 9.3 | 9.5 |
Basu-ANN | 26.6 | 11.7 | 18.7 |
4.3. Discrete biodegradability models
- If Log (KV) ≥ 1.9 (KV≥ 96), then Biodegradability is Low (<50%),
- If (Log (KV) < 1.9, (KV < 96) then Biodegradability is High (≥50%).
Technique | Low-B | High-B | All |
---|---|---|---|
LOOCV DT C5.0 | 9.6 | 6.2 | 7.9 |
LOOCV Logistic Reg. | 3.2 | 3.1 | 4.7 |
LOOCV MBR | 3.2 | 21.8 | 12.7 |
K-Means | 3.2 | 6.2 | 4.7 |
Two-Step | 16.1 | 3.1 | 9.5 |
Logistics-KV | 3.2 | 6.2 | 4.7 |
Rule 1 | 6.4 | 3.1 | 4.7 |
4.4. Comparative analysis and summary of results
5. Conclusions
References
- Haus, F.; Boissel, O.; Junter, J.A. Multivariate regression modeling of mineral base oil biodegradability based on their physical properties and overall chemical composition. Chemosphere 2003, 50, 993–948. [Google Scholar]
- Kapur, G.S.; Sastry, M.I.S.; Jaiswal, A.K.; Sarpal, A.S. Establishing structure-property correlations and classification of base oils using statistical techniques and artificial neural networks. Anal. Chim. Acta 2004, 506, 57–69. [Google Scholar]
- Zeroski, S.; Blockeel, H.; Kompare, P.; Pfahringer, B.; Laer, W.V. Experiments in predicting biodegradability. In Proceedings of the 9th International Workshop on Inductive Logic Programming, Bled, Slovenia, June 1999; pp. 80–91.
- Cambon, B.; Devillers, J. New trends in structure-biodegradability relationships. Quant. Struct. Act. Relat. 1993, 12, 49–56. [Google Scholar] [CrossRef]
- Boethling, R.S.; Sabljic, A. Screening-level model for aerobic biodegradability based on a survey of expert knowledge. Environ. Sci. Technol. 1989, 23, 672–679. [Google Scholar] [CrossRef]
- Amberger, D.; Sekusak, S.; Sabljic, A. Modelling biodegradation by an example based learning system. Informatica 1993, 17, 157–166. [Google Scholar]
- Amberger, D.; Horvatic, D.; Sekusak, S.; Sabljic, A. Application of expert judgment to derive structure- biodegradation relationships, Environ. Sci. Poll. Res. 1996, 3, 224–228. [Google Scholar] [CrossRef] [PubMed]
- Baker, R.; Gamberger, D.; Mihelsic, J.R.; Sabljic, A. Evaluation of artificial intelligence based models for chemical biodegradability prediction. Molecules 2004, 2, 989–1004. [Google Scholar] [CrossRef]
- Sabljic, A.; Peijnenburg, W. Recommendations on modeling lifetime and degradability of organic compounds in air, soil and water systems. Pure Appl. Chem. 2001, 73, 1331–1348. [Google Scholar] [CrossRef]
- Basu, B.; Singh, M.P.; Kapur, G.S.; Ali, N.; Sastry, M.I.S.; Jain, S.K.; Srivastava, S.P.; Bhatnagar, A.K. Prediction of biodegradability of mineral base oils from chemical composition using artificial neural networks. Tribol. Int. 1998, 31, 159–168. [Google Scholar] [CrossRef]
- Rorije, E.; Loonen, H.; Müller, M.; Klopman, G.; Peijnenburg, W.J.G. Evaluation and application of models for the prediction of ready biodegradability in the MITI-I test. Chemosphere 1999, 38, 1409–1417. [Google Scholar] [CrossRef] [PubMed]
© 2010 by the authors. Licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Abdelmelek, S.B.; Saidane, S.; Trabelsi, M. Base Oils Biodegradability Prediction with Data Mining Techniques. Algorithms 2010, 3, 92-99. https://doi.org/10.3390/algor3010092
Abdelmelek SB, Saidane S, Trabelsi M. Base Oils Biodegradability Prediction with Data Mining Techniques. Algorithms. 2010; 3(1):92-99. https://doi.org/10.3390/algor3010092
Chicago/Turabian StyleAbdelmelek, Sihem Ben, Saloua Saidane, and Malika Trabelsi. 2010. "Base Oils Biodegradability Prediction with Data Mining Techniques" Algorithms 3, no. 1: 92-99. https://doi.org/10.3390/algor3010092
APA StyleAbdelmelek, S. B., Saidane, S., & Trabelsi, M. (2010). Base Oils Biodegradability Prediction with Data Mining Techniques. Algorithms, 3(1), 92-99. https://doi.org/10.3390/algor3010092