Next Article in Journal
Methodology, Algorithms, and Emerging Tool for Automated Design of Intelligent Integrated Multi-Sensor Systems
Next Article in Special Issue
Predicting Radiological Panel Opinions Using a Panel of Machine Learning Classifiers
Previous Article in Journal
Delaunay Meshing of Piecewise Smooth Complexes without Expensive Predicates
Previous Article in Special Issue
Computer-Aided Diagnosis Systems for Brain Diseases in Magnetic Resonance Images
Open AccessArticle

CADrx for GBM Brain Tumors: Predicting Treatment Response from Changes in Diffusion-Weighted MRI

UCLA Department of Radiological Sciences, 924 Westwood Blvd., Suite 650, Los Angeles, CA 90024, USA
San Francisco State University Computer Science Department, Thornton Hall 911, 1600 Holloway Avenue, San Francisco, CA 94132-4163, USA
Author to whom correspondence should be addressed.
Algorithms 2009, 2(4), 1350-1367;
Received: 1 August 2009 / Revised: 22 September 2009 / Accepted: 3 November 2009 / Published: 16 November 2009
(This article belongs to the Special Issue Machine Learning for Medical Imaging)
The goal of this study was to develop a computer-aided therapeutic response (CADrx) system for early prediction of drug treatment response for glioblastoma multiforme (GBM) brain tumors with diffusion weighted (DW) MR images. In conventional Macdonald assessment, tumor response is assessed nine weeks or more post-treatment. However, we will investigate the ability of DW-MRI to assess response earlier, at five weeks post treatment. The apparent diffusion coefficient (ADC) map, calculated from DW images, has been shown to reveal changes in the tumor’s microenvironment preceding morphologic tumor changes. ADC values in treated brain tumors could theoretically both increase due to the cell kill (and thus reduced cell density) and decrease due to inhibition of edema. In this study, we investigated the effectiveness of features that quantify changes from pre- and post-treatment tumor ADC histograms to detect treatment response. There are three parts to this study: first, tumor regions were segmented on T1w contrast enhanced images by Otsu’s thresholding method, and mapped from T1w images onto ADC images by a 3D region of interest (ROI) mapping tool using DICOM header information; second, ADC histograms of the tumor region were extracted from both pre- and five weeks post-treatment scans, and fitted by a two-component Gaussian mixture model (GMM). The GMM features as well as standard histogram-based features were extracted. Finally, supervised machine learning techniques were applied for classification of responders or non-responders. The approach was evaluated with a dataset of 85 patients with GBM under chemotherapy, in which 39 responded and 46 did not, based on tumor volume reduction. We compared adaBoost, random forest and support vector machine classification algorithms, using ten-fold cross validation, resulting in the best accuracy of 69.41% and the corresponding area under the curve (Az) of 0.70. View Full-Text
Keywords: CADx; DW-MRI; biomarker; adaBoost; random forest; support vector machine CADx; DW-MRI; biomarker; adaBoost; random forest; support vector machine
Show Figures

Figure 1

MDPI and ACS Style

Huo, J.; Okada, K.; Kim, H.J.; Pope, W.B.; Goldin, J.G.; Alger, J.R.; Brown, M.S. CADrx for GBM Brain Tumors: Predicting Treatment Response from Changes in Diffusion-Weighted MRI. Algorithms 2009, 2, 1350-1367.

Show more citation formats Show less citations formats

Article Access Map by Country/Region

Only visits after 24 November 2015 are recorded.
Search more from Scilit
Back to TopTop