A Two-Step High-Order Compact Corrected WENO Scheme
Abstract
:1. Introduction
2. Numerical Methods
2.1. Conservative Scheme
2.2. The 5th-Order WENO Scheme
2.3. Compact Corrected WENO (CCWENO)
2.4. Introduction to the 1D Benchmark Cases
2.4.1. Sod Shock Tube Problem
2.4.2. Shu–Osher Problem
2.4.3. Problem of Two Interacting Blast Waves
3. Numerical Results
4. Error Analysis and Efficiency Comparison
4.1. Error Analysis
4.2. Efficiency Comparison
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CFD | Computational Fluid Dynamics |
WENO | Weighted Essentially Non-Oscillatory |
DG | Discontinuous Galerkin |
SE | Spectral Element |
SVMs | Spectral Volume Methods |
SDMs | Spectral Difference Methods |
ENO | Essentially Non-Oscillatory |
WCS | Weighted Compact Scheme |
MWCS | Modified Weighted Compact Scheme |
CCWENO | Compact Corrected WENO |
References
- Cockburn, B.; Lin, S.-Y.; Shu, C.-W. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: One-dimensional systems. J. Comput. Phys. 1989, 84, 90–113. [Google Scholar] [CrossRef]
- Cockburn, B.; Shu, C.-W. The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems. SIAM J. Numer. Anal. 1998, 35, 2440–2463. [Google Scholar] [CrossRef]
- Bassi, F.; Rebay, S. A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier–Stokes Equations. J. Comput. Phys. 1997, 131, 267–279. [Google Scholar] [CrossRef]
- Patera, A.T. A spectral element method for fluid dynamics: Laminar flow in a channel expansion. J. Comput. Phys. 1984, 54, 468–488. [Google Scholar] [CrossRef]
- Wang, Z.; Huang, G.P. An Essentially Nonoscillatory High-Order Padé-Type (ENO-Padé) Scheme. J. Comput. Phys. 2002, 177, 37–58. [Google Scholar] [CrossRef]
- Liu, Y.; Vinokur, M.; Wang, Z.J. Spectral (finite) volume method for conservation laws on unstructured grids V: Extension to three-dimensional systems. J. Comput. Phys. 2006, 212, 454–472. [Google Scholar] [CrossRef]
- Liu, Y.; Vinokur, M.; Wang, Z.J. Spectral difference method for unstructured grids I: Basic formulation. J. Comput. Phys. 2006, 216, 780–801. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, Z.J.; Liu, Y. High-Order Multidomain Spectral Difference Method for the Navier-Stokes Equations. In Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV. USA, 9–12 January 2006; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2006. [Google Scholar] [CrossRef]
- Ma, Y.; Fu, D. Fourth order accurate compact scheme with group velocity control (GVC). Sci. China Ser. A-Math. 2001, 44, 1197–1204. [Google Scholar] [CrossRef]
- Shu, C.-W.; Osher, S. Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 1988, 77, 439–471. [Google Scholar] [CrossRef]
- Shu, C.-W.; Osher, S. Efficient implementation of essentially non-oscillatory shock-capturing schemes, II. J. Comput. Phys. 1989, 83, 32–78. [Google Scholar] [CrossRef]
- Harten, A.; Engquist, B.; Osher, S.; Chakravarthy, S.R. Uniformly High Order Accurate Essentially Non-oscillatory Schemes, III. J. Comput. Phys. 1997, 131, 3–47. [Google Scholar] [CrossRef]
- Liu, X.-D.; Osher, S.; Chan, T. Weighted Essentially Non-oscillatory Schemes. J. Comput. Phys. 1994, 115, 200–212. [Google Scholar] [CrossRef]
- Jiang, G.-S.; Shu, C.-W. Efficient Implementation of Weighted ENO Schemes. J. Comput. Phys. 1996, 126, 202–228. [Google Scholar] [CrossRef]
- Shu, C.-W. High Order Weighted Essentially Nonoscillatory Schemes for Convection Dominated Problems. SIAM Rev. 2009, 51, 82–126. [Google Scholar] [CrossRef]
- Deng, X.; Shimizu, Y.; Xiao, F. A Fifth-Order Shock Capturing Scheme with Two-Stage Boundary Variation Diminishing Algorithm. J. Comput. Phys. 2019, 386, 323–349. [Google Scholar] [CrossRef]
- Deng, X.; Shimizu, Y.; Xie, B.; Xiao, F. Constructing Higher Order Discontinuity-Capturing Schemes with Upwind-Biased Interpolations and Boundary Variation Diminishing Algorithm. Comput. Fluids 2020, 200, 104433. [Google Scholar] [CrossRef]
- Jin, P.; Al-Rikabi, A.; Deng, X. A new family of downwind-limited, scale-invariant WENO schemes with optimal accuracy. Comput. Fluids 2023, 264, 105962. [Google Scholar] [CrossRef]
- Borges, R.; Carmona, M.; Costa, B.; Don, W.S. An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. J. Comput. Phys. 2008, 227, 3191–3211. [Google Scholar] [CrossRef]
- Castro, M.; Costa, B.; Don, W.S. High order weighted essentially non-oscillatory WENO-Z schemes for hyperbolic conservation laws. J. Comput. Phys. 2011, 230, 1766–1792. [Google Scholar] [CrossRef]
- Ha, Y.; Kim, C.H.; Lee, Y.J.; Yoon, J. An improved weighted essentially non-oscillatory scheme with a new smoothness indicator. J. Comput. Phys. 2013, 232, 68–86. [Google Scholar] [CrossRef]
- Acker, F.; Borges, R.B.D.R.; Costa, B. An improved WENO-Z scheme. J. Comput. Phys. 2016, 313, 726–753. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, B.-S.; Don, W.S. Generalized Sensitivity Parameter Free Fifth Order WENO Finite Difference Scheme with Z-Type Weights. J. Sci. Comput. 2019, 81, 1329–1358. [Google Scholar] [CrossRef]
- Levy, D.; Puppo, G.; Russo, G. Central WENO schemes for hyperbolic systems of conservation laws. ESAIM M2AN 1999, 33, 547–571. [Google Scholar] [CrossRef]
- Levy, D.; Puppo, G.; Russo, G. A Fourth-Order Central WENO Scheme for Multidimensional Hyperbolic Systems of Conservation Laws. SIAM J. Sci. Comput. 2002, 24, 480–506. [Google Scholar] [CrossRef]
- Balsara, D.S.; Garain, S.; Shu, C.-W. An efficient class of WENO schemes with adaptive order. J. Comput. Phys. 2016, 326, 780–804. [Google Scholar] [CrossRef]
- Jiang, L.; Shan, H.; Liu, C. Weighted Compact Scheme for Shock Capturing. Int. J. Comput. Fluid Dyn. 2001, 15, 147–155. [Google Scholar] [CrossRef]
- Lele, S.K. Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 1992, 103, 16–42. [Google Scholar] [CrossRef]
- Visbal, M.R.; Gaitonde, D.V. On the Use of Higher-Order Finite-Difference Schemes on Curvilinear and Deforming Meshes. J. Comput. Phys. 2002, 181, 155–185. [Google Scholar] [CrossRef]
- Yee, H.C. Explicit and Implicit Multidimensional Compact High-Resolution Shock-Capturing Methods:Formulation. J. Comput. Phys. 1997, 131, 216–232. [Google Scholar] [CrossRef]
- Fu, H.; Wang, Z.; Yan, Y.; Liu, C. Modified weighted compact scheme with global weights for shock capturing. Comput. Fluids 2014, 96, 165–176. [Google Scholar] [CrossRef]
- Sod, G.A. A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. J. Comput. Phys. 1978, 27, 1–31. [Google Scholar] [CrossRef]
- Woodward, P.; Colella, P. The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 1984, 54, 115–173. [Google Scholar] [CrossRef]
- Jun, P.; Zhai, C.; Ni, G.; Yong, H.; Shen, Y. An adaptive characteristic-wise reconstruction WENO-Z scheme for gas dynamic euler equations. Comput. Fluids 2019, 179, 34–51. [Google Scholar]
- Anderson, J.D., Jr. Computational Fluid Dynamics: The Basics with Applications; McGraw Hill: New York, NY, USA, 1994. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Chen, C.; Yuan, S.; Yan, Y. A Two-Step High-Order Compact Corrected WENO Scheme. Algorithms 2025, 18, 364. https://doi.org/10.3390/a18060364
Yang Y, Chen C, Yuan S, Yan Y. A Two-Step High-Order Compact Corrected WENO Scheme. Algorithms. 2025; 18(6):364. https://doi.org/10.3390/a18060364
Chicago/Turabian StyleYang, Yong, Caixia Chen, Shiming Yuan, and Yonghua Yan. 2025. "A Two-Step High-Order Compact Corrected WENO Scheme" Algorithms 18, no. 6: 364. https://doi.org/10.3390/a18060364
APA StyleYang, Y., Chen, C., Yuan, S., & Yan, Y. (2025). A Two-Step High-Order Compact Corrected WENO Scheme. Algorithms, 18(6), 364. https://doi.org/10.3390/a18060364