Beyond Kanban: POLCA-Constrained Scheduling for Job Shops
Abstract
1. Introduction
2. Literature Review
3. POLCA and the Enhanced Contraint Programming: A Basic Case
3.1. Problem Description
- Baseline POLCA (Reactive Control): Jobs are released based on a high-level MRP, and job flow is controlled only by POLCA cards. Jobs queue in work centers and POLCA loops, with earliest due date (EDD) prioritization. The number of POLCA cards per loop is varied to assess its impact on WIP and lead time.
- POLCA and FCS (Proactive Control): POLCA is embedded as a constraint in a constraint programming (CP) model, which pre-determines the start times of operations while respecting POLCA-imposed WIP limits. The scheduler optimizes job sequencing based on multiple performance objectives.
3.2. Modeling Assumptions
3.3. The Proposed Methodology
- Reactive control (left branch): the standard POLCA mechanism driven by a high-level MRP, with jobs queued FIFO/EDD at each workcenter.
- Proactive control (right branch): a finite-capacity schedule that respects POLCA card limits and can be periodically updated when shop-floor deviations become significant.
- the operation is authorized, meaning its release datetime from the Authorization List has been reached (this datetime is determined either by the MRP system in the reactive case or by the finite-capacity scheduler in the proactive case),
- the POLCA card of the next loop is available and therefore taken,
- the workcenter is free and the order is next in the queue according to the Authorization List.
3.3.1. Constraint Programming Model
3.3.2. Simulation Model
3.4. Computational Experiments
3.4.1. Instance Generation
3.4.2. Simulation Model Validation
3.4.3. Computational Results
4. Industrial Case: Aerospace Manufacturing Firm
4.1. Problem Description
4.2. The Proposed Methodology
4.2.1. POLCA Implementation
4.2.2. Constraint Programming Model
4.3. Computational Experiments
4.3.1. Datasets
4.3.2. Computational Results
4.3.3. Stakeholder Feedback
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
POLCA | Paired-cell Overlapping Loops of Cards with Authorization |
HMLV | High-Mix, Low-Volume |
FCS | Finite Capacity Scheduling |
CP | Constraint Programming |
MRP | Material Requirements Planning |
PCS | Production Control System |
APS | Advanced Production Scheduling |
ERP | Enterprise Resource Planning |
WIP | Work In Process |
EDD | Earliest Due Date |
LB-POLCA | Load-based POLCA |
WLC | Workload Control |
IMR | Immediate Release |
ATKS | Adaptive Token-based Kanban System |
GKS | Generalized Kanban System |
DRACO | Non-Hierarchical WIP Control System |
CONWIP | Constant Work In Progress |
COBACABANA | Control of Balance by Card-Based Navigation |
MODCS | Modified Capacity Slack |
FCFS | First-Come-First-Serve |
PFS | Pure Flow Shop |
GFS | General Flow Shop |
RL | Reinforcement Learning |
STT | Shop Floor Throughput Time |
TTT | Total Throughput Time |
KPI | Key Performance Indicator |
IDSS | Intelligent Decision Support Systems |
MTO | Make To Order |
References
- Suri, R. Quick Response Manufacturing: A Companywide Approach to Reducing Lead Times; Taylor & Francis Inc.: Portland, OR, USA, 1998. [Google Scholar]
- Suri, R. The Practitioner’s Guide to POLCA—The Production Control System for High-Mix, Low-Volume and Custom Products; Productivity Press Taylor and Francis: Thames, UK, 2018. [Google Scholar]
- Land, M.J. Cobacabana (control of balance by card-based navigation): A card-based system for job shop control. Int. J. Prod. Econ. 2009, 117, 97–103. [Google Scholar] [CrossRef]
- Braglia, M.; Marrazzini, L.; Padellini, L. COBACABANA: A real industrial application in a job shop system. Prod. Plan. Control. 2020; in press. [Google Scholar]
- Suri, R. It’s About Time—The Competitive Advantage of Quick Response Manufacturing; Productivity Press Taylor and Francis: Thames, UK, 2010. [Google Scholar]
- Luan, S.-C.; Jia, G.-Z.; Kong, W. A Mathematical Programming Formulation Approach to the Number of POLCA Cards. In Proceedings of the 19th International Conference on Management Science & Engineering, Dallas, TX, USA, 20–22 September 2012. [Google Scholar]
- Braglia, M.; Castellano, D.; Frosolini, M. Optimization of POLCA-controlled production systems with a simulation-driven genetic algorithm. Int. J. Adv. Manuf. Technol. 2014, 70, 385–395. [Google Scholar] [CrossRef]
- Vandaele, N.; Van Nieuwenhuyse, I.; Claerhout, D.; Cremmery, R. Load-Based POLCA: An Integrated Material Control System for Multiproduct, Multimachine Job Shops. Manuf. Serv. Oper. Manag. 2008, 10, 181–197. [Google Scholar] [CrossRef]
- Krishnamurthy, A.; Suri, R. Planning and implementing POLCA: A card-based control system for high variety or custom engineered products. Prod. Plan. Control 2009, 20, 596–610. [Google Scholar] [CrossRef]
- Wang, W.; Khalid, Q.S.; Abas, M.; Li, H.; Azim, S.; Babar, A.R.; Saleem, W.; Khan, R. Implementation of POLCA Integrated QRM Framework for Optimized Production Performance—A Case Study. Sustainability 2021, 13, 3452. [Google Scholar] [CrossRef]
- Silva, C.; Reis, V.; Morais, A.; Brilenkov, I.; Vaza, J.; Pinheiro, T.; Neves, M.; Henriques, M.; Varela, M.L.; Pereira, G.; et al. A comparison of production control systems in a flexible flow shop. Procedia Manuf. 2017, 13, 1090–1095. [Google Scholar] [CrossRef]
- Thürer, M.; Fernandes, N.O.; Stevenson, M.; Silva, C.; Carmo-Silva, S. POLC-A: An assessment of POLCA’s authorization element. J. Intell. Manuf. 2019, 30, 2435–2447. [Google Scholar] [CrossRef]
- Fernandes, N.O.; Thürer, M.; Ferreira, L.P.; Carmo-Silva, S. POLCA: Centralised vs. Decentralised Job Release. IFAC-PapersOnLine 2019, 52, 1427–1431. [Google Scholar] [CrossRef]
- Fernandes, N.O.; Thürer, M.; Mirzaei, N.; Ferreira, L.P.; Silva, F.J.G.; Carmo-Silva, S. POLCA Control in Two-Stage Production Systems. Procedia Manuf. 2020, 51, 1491–1496. [Google Scholar] [CrossRef]
- Fernandes, A.S.; Oliveira, C.M.; Costa, H.M.; Coelho, J.M.; Varela, L.R.; Henriques, M.; Dias, L.; Pereira, G.; Fernandes, N.O.; Carmo-Silva, S. Evaluating the effects of inventory stockouts in the performance of production control systems. Procedia Manuf. 2021, 55, 417–423. [Google Scholar] [CrossRef]
- Gómez Paredes, F.J.; Godinho Filho, M.; Thürer, M.; Fernandes, N.O.; Jabbour, C.J.C. Factors for choosing production control systems in make-to-order shops: A systematic literature review. J. Intell. Manuf. 2020; in press. [Google Scholar]
- Kasper, T.A.A.; Land, M.J.; Teunter, R.H. Non-hierarchical work-in-progress control in manufacturing. Int. J. Prod. Econ. 2023, 257, 108768. [Google Scholar] [CrossRef]
Symbol | Description |
---|---|
M | Number of workcenters |
N | Number of orders |
Number of jobs of order i | |
Set of all workcenters | |
Set of all orders | |
Sorted set of all jobs of order i | |
Processing time of job j in order i | |
Workcenter of job j in order i | |
Set of jobs assigned to workcenter m | |
Set of jobs representing transitions between workcenters and | |
Arrival time of order i | |
Due time of order i | |
C | Maximum number of active POLCA cards |
Interval variable for order i | |
Interval variable for job j in order i | |
Interval variable for POLCA card utilization | |
Integer variable corresponding to tardiness of order i |
opt Mode | nb Machines | Polca Cards | Simulation Mode | Instances | with Deadlock | pct with Deadlock |
---|---|---|---|---|---|---|
early | 6 | 1 | opt | 10 | 0 | 0.00 |
sim | 10 | 10 | 100.00 | |||
2 | opt | 10 | 0 | 0.00 | ||
sim | 10 | 0 | 0.00 | |||
3 | opt | 10 | 0 | 0.00 | ||
sim | 10 | 0 | 0.00 | |||
9 | 1 | opt | 10 | 0 | 0.00 | |
sim | 10 | 10 | 100.00 | |||
2 | opt | 10 | 0 | 0.00 | ||
sim | 10 | 0 | 0.00 | |||
3 | opt | 10 | 0 | 0.00 | ||
sim | 10 | 0 | 0.00 | |||
12 | 1 | opt | 10 | 0 | 0.00 | |
sim | 10 | 5 | 50.00 | |||
2 | opt | 10 | 0 | 0.00 | ||
sim | 10 | 0 | 0.00 | |||
3 | opt | 10 | 0 | 0.00 | ||
sim | 10 | 0 | 0.00 | |||
late | 6 | 1 | opt | 10 | 0 | 0.00 |
sim | 10 | 10 | 100.00 | |||
2 | opt | 10 | 0 | 0.00 | ||
sim | 10 | 0 | 0.00 | |||
3 | opt | 10 | 0 | 0.00 | ||
sim | 10 | 0 | 0.00 | |||
9 | 1 | opt | 10 | 0 | 0.00 | |
sim | 10 | 10 | 100.00 | |||
2 | opt | 10 | 0 | 0.00 | ||
sim | 10 | 0 | 0.00 | |||
3 | opt | 10 | 0 | 0.00 | ||
sim | 10 | 0 | 0.00 | |||
12 | 1 | opt | 10 | 0 | 0.00 | |
sim | 10 | 5 | 50.00 | |||
2 | opt | 10 | 0 | 0.00 | ||
sim | 10 | 0 | 0.00 | |||
3 | opt | 10 | 0 | 0.00 | ||
sim | 10 | 0 | 0.00 |
opt Mode | nb Machines | Polca | sim Mode | avg Tardiness | std Tardiness | min Tardiness | max Tardiness | pct Tardy | sum Waiting Time | avg stt | max stt | avg ttt | max ttt |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
early | 6 | 1 | opt | 908.66 | 1240.90 | 0.00 | 13,042.00 | 93.55 | 1,817,351.00 | 463.43 | 1111.00 | 1260.18 | 13,955.00 |
sim | |||||||||||||
2 | opt | 654.70 | 986.61 | 0.00 | 10,971.00 | 93.15 | 1,309,432.00 | 473.58 | 1111.00 | 1006.22 | 11,478.00 | ||
sim | 931.52 | 695.61 | 0.00 | 3157.00 | 96.05 | 1,863,081.00 | 849.65 | 3974.00 | 1283.04 | 4001.00 | |||
3 | opt | 641.39 | 1103.24 | 0.00 | 12,560.00 | 92.60 | 1,282,818.00 | 477.47 | 1111.00 | 992.91 | 13,460.00 | ||
sim | 905.20 | 648.88 | 0.00 | 2885.00 | 96.05 | 1,810,430.00 | 829.09 | 3448.00 | 1256.71 | 3797.00 | |||
9 | 1 | opt | 1041.77 | 1515.55 | 0.00 | 12,972.00 | 93.30 | 2,083,557.00 | 693.27 | 1629.00 | 1537.53 | 14,432.00 | |
sim | |||||||||||||
2 | opt | 806.92 | 1161.21 | 0.00 | 11,117.00 | 92.50 | 1,613,847.00 | 731.89 | 1629.00 | 1302.67 | 12,577.00 | ||
sim | 1013.90 | 785.82 | 0.00 | 3930.00 | 96.40 | 2,027,823.00 | 1161.94 | 4822.00 | 1509.66 | 5009.00 | |||
3 | opt | 840.89 | 1302.41 | 0.00 | 12,917.00 | 93.60 | 1,681,803.00 | 721.19 | 1629.00 | 1336.65 | 13,934.00 | ||
sim | 999.69 | 756.28 | 0.00 | 3573.00 | 96.60 | 1,999,402.00 | 1133.33 | 4189.00 | 1495.45 | 4458.00 | |||
12 | 1 | opt | 1753.36 | 2399.49 | 0.00 | 15,465.00 | 94.75 | 3,506,686.00 | 1004.57 | 1976.00 | 2404.50 | 16,273.00 | |
sim | 1280.77 | 1188.76 | 0.00 | 6832.00 | 96.10 | 1,280,725.00 | 1608.93 | 6469.00 | 1910.45 | 8179.00 | |||
2 | opt | 1316.50 | 1783.91 | 0.00 | 13,065.00 | 95.45 | 2,632,964.00 | 1029.99 | 1976.00 | 1967.64 | 13,886.00 | ||
sim | 1210.89 | 930.19 | 0.00 | 4747.00 | 96.75 | 2,421,760.00 | 1505.76 | 5701.00 | 1862.03 | 6314.00 | |||
3 | opt | 1322.17 | 1847.20 | 0.00 | 13,329.00 | 94.75 | 2,644,302.00 | 1035.78 | 1976.00 | 1973.30 | 15,156.00 | ||
sim | 1234.76 | 938.41 | 0.00 | 4303.00 | 97.10 | 2,469,509.00 | 1519.32 | 5721.00 | 1885.91 | 5768.00 | |||
late | 6 | 1 | opt | 794.13 | 1166.73 | 0.00 | 11,468.00 | 92.50 | 1,588,276.00 | 474.72 | 1111.00 | 1145.64 | 12,434.00 |
sim | |||||||||||||
2 | opt | 678.52 | 1005.67 | 0.00 | 10,155.00 | 92.95 | 1,357,080.00 | 479.03 | 1111.00 | 1030.04 | 11,265.00 | ||
sim | 931.52 | 695.61 | 0.00 | 3157.00 | 96.05 | 1,863,081.00 | 849.65 | 3974.00 | 1283.04 | 4001.00 | |||
3 | opt | 658.05 | 1074.14 | 0.00 | 11,551.00 | 92.65 | 1,316,133.00 | 473.40 | 1111.00 | 1009.57 | 12,462.00 | ||
sim | 905.20 | 648.88 | 0.00 | 2885.00 | 96.05 | 1,810,430.00 | 829.09 | 3448.00 | 1256.71 | 3797.00 | |||
9 | 1 | opt | 946.63 | 1400.26 | 0.00 | 13,496.00 | 92.70 | 1,893,265.00 | 706.18 | 1629.00 | 1442.38 | 14,633.00 | |
sim | |||||||||||||
2 | opt | 800.25 | 1160.16 | 0.00 | 10,939.00 | 92.20 | 1,600,520.00 | 715.54 | 1629.00 | 1296.01 | 12,399.00 | ||
sim | 1013.90 | 785.82 | 0.00 | 3930.00 | 96.40 | 2,027,823.00 | 1161.94 | 4822.00 | 1509.66 | 5009.00 | |||
3 | opt | 775.86 | 1162.90 | 0.00 | 10,949.00 | 93.10 | 1,551,735.00 | 704.81 | 1629.00 | 1271.62 | 12,350.00 | ||
sim | 999.69 | 756.28 | 0.00 | 3573.00 | 96.60 | 1,999,402.00 | 1133.33 | 4189.00 | 1495.45 | 4458.00 | |||
12 | 1 | opt | 1530.77 | 2113.41 | 0.00 | 14,709.00 | 95.04 | 3,520,746.00 | 1039.96 | 1976.00 | 2175.68 | 16306.00 | |
sim | 1287.56 | 1171.31 | 0.00 | 6832.00 | 95.92 | 1,673,782.00 | 1610.68 | 6917.00 | 1911.16 | 8179.00 | |||
2 | opt | 1250.68 | 1838.22 | 0.00 | 15,187.00 | 94.20 | 2,501,320.00 | 992.64 | 1976.00 | 1901.81 | 16,784.00 | ||
sim | 1210.89 | 930.19 | 0.00 | 4747.00 | 96.75 | 2,421,760.00 | 1505.76 | 5701.00 | 1862.03 | 6314.00 | |||
3 | opt | 1302.50 | 1987.93 | 0.00 | 15,528.00 | 94.20 | 2,604,968.00 | 1019.17 | 1976.00 | 1953.64 | 16,514.00 | ||
sim | 1234.76 | 938.41 | 0.00 | 4303.00 | 97.10 | 2,469,509.00 | 1519.32 | 5721.00 | 1885.91 | 5768.00 |
Opt. Mode | Machines | POLCA | Mean (opt) | Std (opt) | Mean (sim) | Std (sim) | t-stat | p-Value | Levene p | Equal var |
---|---|---|---|---|---|---|---|---|---|---|
early | 6 | 1 | ||||||||
2 | 654.701 | 126.251 | 931.521 | 179.359 | −3.991 | 0.001 | 0.117 | True | ||
3 | 641.394 | 160.338 | 905.196 | 156.665 | −3.721 | 0.002 | 0.999 | True | ||
9 | 1 | |||||||||
2 | 806.920 | 170.408 | 1013.899 | 141.613 | −2.954 | 0.008 | 0.495 | True | ||
3 | 840.894 | 193.575 | 999.687 | 160.194 | −1.998 | 0.061 | 0.326 | True | ||
12 | 1 | 1753.359 | 808.434 | 1280.766 | 499.874 | 1.186 | 0.257 | 0.267 | True | |
2 | 1316.496 | 612.008 | 1210.892 | 384.202 | 0.462 | 0.650 | 0.163 | True | ||
3 | 1322.166 | 646.300 | 1234.764 | 379.812 | 0.369 | 0.717 | 0.330 | True | ||
late | 6 | 1 | ||||||||
2 | 678.525 | 172.576 | 931.521 | 179.359 | −3.214 | 0.005 | 0.607 | True | ||
3 | 658.054 | 148.399 | 905.196 | 156.665 | −3.622 | 0.002 | 0.818 | True | ||
9 | 1 | |||||||||
2 | 800.254 | 194.122 | 1013.899 | 141.613 | −2.812 | 0.012 | 0.242 | True | ||
3 | 775.861 | 175.774 | 999.687 | 160.194 | −2.976 | 0.008 | 0.612 | True | ||
12 | 1 | 1590.305 | 749.887 | 1322.260 | 475.042 | 0.723 | 0.483 | 0.447 | True | |
2 | 1250.678 | 558.007 | 1210.892 | 384.202 | 0.186 | 0.855 | 0.423 | True | ||
3 | 1302.504 | 802.221 | 1234.764 | 379.812 | 0.241 | 0.812 | 0.250 | True |
Opt. Mode | Machines | POLCA | Mean (opt) | Std (opt) | Mean (sim) | Std (sim) | t-stat | p-Value | Levene p | Equal var |
---|---|---|---|---|---|---|---|---|---|---|
early | 6 | 1 | ||||||||
2 | 473.576 | 35.815 | 849.652 | 96.355 | −11.569 | 0.000 | 0.002 | False | ||
3 | 477.471 | 34.543 | 829.087 | 84.533 | −12.176 | 0.000 | 0.011 | False | ||
9 | 1 | |||||||||
2 | 731.893 | 44.079 | 1161.942 | 94.263 | −13.069 | 0.000 | 0.030 | False | ||
3 | 721.186 | 42.034 | 1133.333 | 92.866 | −12.786 | 0.000 | 0.055 | True | ||
12 | 1 | 1004.566 | 126.821 | 1608.930 | 407.973 | −3.235 | 0.028 | 0.038 | False | |
2 | 1029.989 | 130.862 | 1505.763 | 283.209 | −4.823 | 0.000 | 0.108 | True | ||
3 | 1035.781 | 118.854 | 1519.316 | 279.517 | −5.034 | 0.000 | 0.049 | False | ||
late | 6 | 1 | ||||||||
2 | 479.033 | 40.507 | 849.652 | 96.355 | −11.213 | 0.000 | 0.004 | False | ||
3 | 473.396 | 36.795 | 829.087 | 84.533 | −12.200 | 0.000 | 0.019 | False | ||
9 | 1 | |||||||||
2 | 715.541 | 39.251 | 1161.942 | 94.263 | −13.825 | 0.000 | 0.011 | False | ||
3 | 704.814 | 38.552 | 1133.333 | 92.866 | −13.477 | 0.000 | 0.036 | False | ||
12 | 1 | 1038.370 | 105.014 | 1644.480 | 383.543 | −3.469 | 0.023 | 0.028 | False | |
2 | 992.641 | 108.622 | 1505.763 | 283.209 | −5.349 | 0.000 | 0.056 | True | ||
3 | 1019.169 | 132.581 | 1519.316 | 279.517 | −5.112 | 0.000 | 0.070 | True |
Opt. Mode | Machines | POLCA | Mean (opt) | Std (opt) | Mean (sim) | Std (sim) | t-stat | p-Value | Levene p | Equal var |
---|---|---|---|---|---|---|---|---|---|---|
early | 6 | 1 | ||||||||
2 | 987.200 | 61.827 | 3042.900 | 476.465 | −13.530 | 0.000 | 0.015 | False | ||
3 | 987.200 | 61.827 | 2736.100 | 414.941 | −13.183 | 0.000 | 0.013 | False | ||
9 | 1 | |||||||||
2 | 1411.100 | 137.618 | 3771.300 | 473.882 | −15.125 | 0.000 | 0.085 | True | ||
3 | 1411.100 | 137.618 | 3648.000 | 363.773 | −18.187 | 0.000 | 0.011 | False | ||
12 | 1 | 1764.700 | 127.005 | 5062.600 | 1247.055 | −5.898 | 0.004 | 0.012 | False | |
2 | 1759.200 | 129.772 | 4565.300 | 815.713 | −10.743 | 0.000 | 0.000 | False | ||
3 | 1743.900 | 140.292 | 4391.800 | 898.081 | −9.212 | 0.000 | 0.001 | False | ||
late | 6 | 1 | ||||||||
2 | 987.200 | 61.827 | 3042.900 | 476.465 | −13.530 | 0.000 | 0.015 | False | ||
3 | 987.200 | 61.827 | 2736.100 | 414.941 | −13.183 | 0.000 | 0.013 | False | ||
9 | 1 | |||||||||
2 | 1411.100 | 137.618 | 3771.300 | 473.882 | −15.125 | 0.000 | 0.085 | True | ||
3 | 1411.100 | 137.618 | 3648.000 | 363.773 | −18.187 | 0.000 | 0.011 | False | ||
12 | 1 | 1791.000 | 116.140 | 5570.200 | 1405.684 | −6.001 | 0.004 | 0.016 | False | |
2 | 1748.500 | 133.774 | 4565.300 | 815.713 | −10.776 | 0.000 | 0.000 | False | ||
3 | 1749.600 | 134.345 | 4391.800 | 898.081 | −9.201 | 0.000 | 0.001 | False |
Symbol | Description |
---|---|
M | Number of workcenters |
W | Number of workers |
G | Number of cells |
N | Number of orders |
Number of jobs in order i | |
Set of all workcenters m | |
Set of all workers w | |
Set of all cells g | |
Set of all orders i | |
Sorted set of all jobs j in order i | |
Boolean parameter: 1 if workcenter m can process multiple jobs simultaneously, 0 otherwise | |
Boolean parameter: 1 if worker w can process multiple jobs simultaneously, 0 otherwise | |
Set of time slots when workcenter m is unavailable | |
Set of time slots when worker w is unavailable | |
Processing time of job on the worker | |
Additional processing time of job on the workcenter | |
Additional processing time of job on the part number | |
Workcenter of job | |
Set of workers qualified to process job | |
Cell of job | |
Minimum delay between the end of job and the start of job | |
Maximum delay between the end of job and the start of job | |
Set of jobs assigned to workcenter m | |
Set of jobs assignable to worker w | |
Set of jobs representing transitions between cells and . Such that , , and | |
Arrival time of order i | |
Quantum for POLCA loop | |
Due time of order i | |
Maximum number of active POLCA cards | |
Interval variable for order i | |
Optional Interval variable for worker w executing job | |
Interval variable for processing job on the worker | |
Interval variable for processing job on the workcenter | |
Interval variable for the overall processing for job | |
Interval variable for POLCA card utilization | |
Integer variable representing the actual delay between the end of job and the start of job | |
Integer variable corresponding to tardiness of order i |
KPI | Run 1 | Run 2 | Run 3 | Run 4 | Run 5 |
---|---|---|---|---|---|
Commercial Scheduler | |||||
Max Lead Time [days] | 614.45 | 678.17 | 496.34 | 726.35 | 337.02 |
Sum of Lead Times [days] | 83,174.74 | 97,395.33 | 61,859.58 | 71,348.79 | 43,385.88 |
Number of Tardy Orders | 941.00 | 928.00 | 857.00 | 935.00 | 863.00 |
Sum of Tardiness [days] | 88,851.72 | 112,643.83 | 93,476.54 | 104,375.12 | 116,645.50 |
Makespan [days] | 615.70 | 725.95 | 584.93 | 821.93 | 518.27 |
Sum of Completion Times [days] | 91,803.64 | 168,673.14 | 192,756.19 | 215,136.93 | 287,286.95 |
CP Model | |||||
Max Lead Time [days] | 381.02 | 336.02 | 386.02 | 378.69 | 293.02 |
Sum of Lead Times [days] | 55,786.78 | 50,133.72 | 42,947.60 | 44,207.31 | 34,769.23 |
Number of Tardy Orders | 819.00 | 777.00 | 771.00 | 800.00 | 834.00 |
Sum of Tardiness [days] | 68,136.81 | 75,059.27 | 84,392.82 | 88,183.42 | 111,596.68 |
Makespan [days] | 382.27 | 382.27 | 474.27 | 543.68 | 474.27 |
Sum of Completion Times [days] | 65,311.06 | 125,158.34 | 179,170.48 | 194,153.20 | 282,755.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grieco, A.; Caricato, P.; Margiotta, P. Beyond Kanban: POLCA-Constrained Scheduling for Job Shops. Algorithms 2025, 18, 340. https://doi.org/10.3390/a18060340
Grieco A, Caricato P, Margiotta P. Beyond Kanban: POLCA-Constrained Scheduling for Job Shops. Algorithms. 2025; 18(6):340. https://doi.org/10.3390/a18060340
Chicago/Turabian StyleGrieco, Antonio, Pierpaolo Caricato, and Paolo Margiotta. 2025. "Beyond Kanban: POLCA-Constrained Scheduling for Job Shops" Algorithms 18, no. 6: 340. https://doi.org/10.3390/a18060340
APA StyleGrieco, A., Caricato, P., & Margiotta, P. (2025). Beyond Kanban: POLCA-Constrained Scheduling for Job Shops. Algorithms, 18(6), 340. https://doi.org/10.3390/a18060340