Fuzzy Clustering Approaches Based on Numerical Optimizations of Modified Objective Functions
Abstract
1. Introduction
2. Classical FCM and Modifications on Its Objective Function
- Initialize the centers of the clusters, assigning as values random data instances.
- Initialize the partition matrix (assigning 0 to all its entries).
- Set (number of iterations).
- Evaluate the values (i.e., the distances of instances from cluster centers).
- Update membership values as
- Update the centers of the clusters as
- (increment the number of iterations).
- If jump to step 4.
- END.
2.1. An Regularization Term
2.2. An Entropy Term
2.3. A Sparsity-Inducing Term
2.4. A Penalty for Large-Sized Clusters
2.5. A Spatial Regularization Term
3. Optimization Based on Numerical Techniques
3.1. Gradient Descent
- Initialize the centers of the clusters, assigning as values random data instances.
- Initialize the partition matrix (assigning 0 to all its entries).
- Set k = 1 (number of iterations).
- Update membership values according to Equation (8).
- Normalize the membership values according to Equation (9).
- Update the centers of the clusters according to Equation (10).
- k = k + 1 (increment the number of iterations).
- If jump to step 4.
- END.
3.2. Root Mean Square Propagation (RMSprop)
- Initialize the centers of the clusters, assigning as values random data instances.
- Initialize the partition matrix (assigning 0 to all its entries).
- Set (number of iterations).
- Update the gradients of the memberships according to Equation (12).
- Update the weighted quadratic average according to Equation (13).
- Update memberships, applying Equation (11) for , so
- Normalize the membership values according to Equation (9).
- Update the gradients of the centers according to Equation (14).
- Update the centers applying Equation (11) for , so
- (increment the number of iterations)
- If jump to step 4.
- END.
3.3. Adaptive Moment Estimation (Adam)
- Initialize the centers of the clusters, assigning as values random data instances.
- Initialize the partition matrix (assigning 0 to all its entries).
- Set (number of iterations).
- Update the gradients of the memberships according to Equation (12).
- Update the first and second moments for each membership value according to Equation (16).
- Apply the bias correction for both moments of the membership values according to Equation (17).
- Update the membership values, applying Equation (15) for , so
- Normalize the membership values according to Equation (9).
- Update the gradients of the centers according to Equation (14).
- Update the first and second moments of the centers according to Equation (16).
- Apply the bias correction for both moments of the centers according to Equation (17).
- Update the centers, applying Equation (15) for , so
- (increment the number of iterations).
- If jump to step 4.
- END.
4. Experimental Studies
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ezugwu, A.E.; Ezugwu, A.E.; Ikotun, A.M.; Oyelade, O.O.; Abualigah, L.; Agushaka, J.O.; Eke, C.I.; Akinyelu, A.A. A comprehensive survey of clustering algorithms: State-of-the-art machine learning applications, taxonomy, challenges, and future research prospects. Eng. Appl. Artif. Intell. 2022, 110, 104743. [Google Scholar] [CrossRef]
- Hashemi, S.E.; Gholian-Jouybari, F.; Hajiaghaei-Keshteli, M. A fuzzy C-means algorithm for optimizing data clustering. Expert Syst. Appl. 2023, 227, 120377. [Google Scholar] [CrossRef]
- Rada, R.; Bedalli, E.; Shurdhi, S.; Çiço, B. A comparative analysis on prototype-based clustering methods. In Proceedings of the 12th Mediterranean Conference on Embedded Computing (MECO 2023), Budva, Montenegro, 6–10 June 2023; IEEE: Piscataway, NJ, USA; pp. 1–5. [Google Scholar]
- Krasnov, D.; Davis, D.; Malott, K.; Chen, Y.; Shi, X.; Wong, A. Fuzzy c-means clustering: A review of applications in breast cancer detection. Entropy 2023, 25, 1021. [Google Scholar] [CrossRef]
- Gosain, A.; Sonika, D. Performance analysis of various fuzzy clustering algorithms: A review. Procedia Comput. Sci. 2016, 79, 100–111. [Google Scholar] [CrossRef]
- Liu, J.; Xu, M. Penalty Constraints and Kernelization of M-Estimation Based Fuzzy C-Means. arXiv 2012, arXiv:1207.4417. [Google Scholar]
- Borgelt, C. Objective functions for fuzzy clustering. In Computational Intelligence in Intelligent Data Analysis; Springer: Berlin/Heidelberg, Germany, 2013; pp. 3–16. [Google Scholar]
- Kang, J.; Min, L.; Luan, Q.; Li, X.; Liu, J. Novel modified fuzzy c-means algorithm with applications. Digit. Signal Process. 2009, 19, 309–319. [Google Scholar] [CrossRef]
- Adhikari, S.K.; Sing, J.K.; Basu, D.K.; Nasipuri, M. Conditional spatial fuzzy C-means clustering algorithm for segmentation of MRI images. Appl. Soft Comput. 2015, 34, 758–769. [Google Scholar] [CrossRef]
- Zabihi, S.M.; Akbarzadeh-T, M.R. Generalized fuzzy C-means clustering with improved fuzzy partitions and shadowed sets. Int. Sch. Res. Not. 2012, 2012, 929085. [Google Scholar] [CrossRef]
- Hajrulla, S.; Bedalli, E.; Kosova, R.; Cela, M.; Ali, L. Dynamic processes through the mathematical models and numerical evaluations. J. Ilm. Ilmu Terap. Univ. Jambi 2025, 9, 199–215. [Google Scholar] [CrossRef]
- Khang, T.D.; Vuong, N.D.; Tran, M.K.; Fowler, M. Fuzzy C-means clustering algorithm with multiple fuzzification coefficients. Algorithms 2020, 13, 158. [Google Scholar] [CrossRef]
- Bedalli, E.; Ninka, I. Exploring an educational system’s data through fuzzy cluster analysis. In Proceedings of the 11th Annual International Conference on Information Technology & Computer Science, Athens, Greece, 18–21 May 2014; pp. 33–44. [Google Scholar]
- Hoppner, F.; Klawonn, F. A contribution to convergence theory of fuzzy c-means and derivatives. IEEE Trans. Fuzzy Syst. 2003, 11, 682–694. [Google Scholar] [CrossRef]
- Pérez-Ortega, J.; Roblero-Aguilar, S.S.; Almanza-Ortega, N.N.; Frausto Solís, J.; Zavala-Díaz, C.; Hernández, Y.; Landero-Nájera, V. Hybrid fuzzy C-means clustering algorithm oriented to big data realms. Axioms 2022, 11, 377. [Google Scholar] [CrossRef]
- Benjamin, J.B.M.; Yang, M.S. Weighted multiview possibilistic c-means clustering with L2 regularization. IEEE Trans. Fuzzy Syst. 2021, 30, 1357–1370. [Google Scholar] [CrossRef]
- Cardone, B.; Di Martino, F. A novel fuzzy entropy-based method to improve the performance of the fuzzy C-means algorithm. Electronics 2020, 9, 554. [Google Scholar] [CrossRef]
- Ichihashi, H.; Honda, K.; Notsu, A.; Hattori, T. Aggregation of standard and entropy based fuzzy c-means clustering by a modified objective function. In Proceedings of the 2007 IEEE Symposium on Foundations of Computational Intelligence, Honolulu, HI, USA, 1–5 April 2007; IEEE: Piscataway, NJ, USA; pp. 447–453. [Google Scholar]
- Guillon, A.; Lesot, M.J.; Marsala, C. Sparsity-inducing fuzzy subspace clustering. In Archives of Data Science, Series B; Lucius & Lucius Verlagsgesellschaft mbH: Stuttgart, Germany, 2019. [Google Scholar]
- Bonilla, J.; Vélez, D.; Montero, J.; Rodríguez, J.T. Fuzzy clustering methods with Rényi relative entropy and cluster size. Mathematics 2021, 9, 1423. [Google Scholar] [CrossRef]
- Yang, Y.; Huang, S. Image segmentation by fuzzy c-means clustering algorithm with a novel penalty term. Comput. Inform. 2007, 26, 17–31. [Google Scholar]
- Zhao, F.; Jiao, L.; Liu, H. Fuzzy c-means clustering with non-local spatial information for noisy image segmentation. Front. Comput. Sci. China 2011, 5, 45–56. [Google Scholar] [CrossRef]
- Binu, D. Cluster analysis using optimization algorithms with newly designed objective functions. Expert Syst. Appl. 2015, 42, 5848–5859. [Google Scholar] [CrossRef]
- Wang, X.; Yan, L.; Zhang, Q. Research on the application of gradient descent algorithm in machine learning. In Proceedings of the 2021 International Conference on Computer network, Electronic and Automation (ICCNEA), Xi’an, China, 20–26 September 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 11–15. [Google Scholar]
- Tian, Y.; Zhang, Y.; Zhang, H. Recent advances in stochastic gradient descent in deep learning. Mathematics 2023, 11, 682. [Google Scholar] [CrossRef]
- Shi, N.; Li, D. Rmsprop converges with proper hyperparameter. In Proceedings of the International Conference on Learning Representation, Vienna, Austria, 3–7 May 2021. [Google Scholar]
- Liu, J.; Xu, D.; Zhang, H.; Mandic, D. On hyper-parameter selection for guaranteed convergence of RMSProp. Cogn. Neurodynamics 2024, 18, 3227–3237. [Google Scholar] [CrossRef]
- Khaniki, M.A.L.; Hadi, M.B.; Manthouri, M. Feedback error learning controller based on RMSprop and Salp swarm algorithm for automatic voltage regulator system. In Proceedings of the 2020 10th International Conference on Computer and Knowledge Engineering (ICCKE), Mashhad, Iran, 29–30 October 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 425–430. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2015, arXiv:1412.6980. [Google Scholar]
- Bock, S.; Weiß, M. A proof of local convergence for the Adam optimizer. In Proceedings of the 2019 International Joint Conference on Neural Networks (IJCNN), Budapest, Hungary, 14–19 July 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–8. [Google Scholar]
- Khan, M.M.R.; Arif, R.B.; Siddique, M.A.B.; Oishe, M.R. Study and observation of the variation of accuracies of KNN, SVM, LMNN, ENN algorithms on eleven different datasets from UCI machine learning repository. In Proceedings of the 2018 4th International Conference on Electrical Engineering and Information & Communication Technology (iCEEiCT), Kuala Lumpur, Malaysia, 26–28 January 2018; IEEE: Piscataway, NJ, USA, 2019; pp. 124–129. [Google Scholar]
- Hullermeier, E.; Rifqi, M.; Henzgen, S.; Senge, R. Comparing fuzzy partitions: A generalization of the rand index and related measures. IEEE Trans. Fuzzy Syst. 2011, 20, 546–556. [Google Scholar] [CrossRef]
- Yuan, Z.; Chen, H.; Zhang, P.; Wan, J.; Li, T. A novel unsupervised approach to heterogeneous feature selection based on fuzzy mutual information. IEEE Trans. Fuzzy Syst. 2021, 30, 3395–3409. [Google Scholar] [CrossRef]
Dataset | # Features | # Instances | # Clusters |
---|---|---|---|
Banknotes | 5 | 1372 | 2 |
Liver | 10 | 583 | 2 |
Yeast | 8 | 1484 | 10 |
Dermatology | 34 | 366 | 6 |
Vehicle Silhouettes | 18 | 846 | 4 |
LANDSAT Satellite | 36 | 6435 | 7 |
Dataset | Classical FCM | |
---|---|---|
F-ARI | F-NMI | |
Banknotes | 0.73 | 0.74 |
Liver | 0.68 | 0.72 |
Yeast | 0.65 | 0.69 |
Dermatology | 0.70 | 0.73 |
Vehicle Silhouettes | 0.68 | 0.74 |
LANDSAT Satellite | 0.69 | 0.76 |
Dataset | Objective Function Modification | GD | RMSprop | Adam | |||
---|---|---|---|---|---|---|---|
F-ARI | F-NMI | F-ARI | F-NMI | F-ARI | F-NMI | ||
Banknotes | L2REG | 0.73 | 0.76 | 0.74 | 0.77 | 0.75 | 0.78 |
ENTR-T | 0.76 | 0.79 | 0.77 | 0.8 | 0.78 | 0.81 | |
SP-IN | 0.75 | 0.8 | 0.76 | 0.81 | 0.77 | 0.82 | |
PEN-LSC | 0.78 | 0.81 | 0.79 | 0.82 | 0.80 | 0.83 | |
SPAT-REG | 0.77 | 0.82 | 0.78 | 0.83 | 0.79 | 0.84 | |
Liver | L2REG | 0.68 | 0.72 | 0.69 | 0.73 | 0.7 | 0.74 |
ENTR-T | 0.71 | 0.75 | 0.72 | 0.76 | 0.73 | 0.77 | |
SP-IN | 0.72 | 0.77 | 0.73 | 0.78 | 0.74 | 0.81 | |
PEN-LSC | 0.74 | 0.78 | 0.75 | 0.79 | 0.76 | 0.8 | |
SPAT-REG | 0.73 | 0.79 | 0.74 | 0.8 | 0.75 | 0.79 | |
Yeast | L2REG | 0.66 | 0.7 | 0.67 | 0.71 | 0.68 | 0.72 |
ENTR-T | 0.69 | 0.73 | 0.70 | 0.74 | 0.71 | 0.75 | |
SP-IN | 0.70 | 0.74 | 0.71 | 0.75 | 0.72 | 0.76 | |
PEN-LSC | 0.72 | 0.76 | 0.73 | 0.77 | 0.74 | 0.78 | |
SPAT-REG | 0.71 | 0.77 | 0.72 | 0.78 | 0.73 | 0.79 | |
Dermatology | L2REG | 0.70 | 0.75 | 0.71 | 0.76 | 0.72 | 0.77 |
ENTR-T | 0.73 | 0.78 | 0.74 | 0.79 | 0.75 | 0.8 | |
SP-IN | 0.74 | 0.79 | 0.75 | 0.8 | 0.76 | 0.81 | |
PEN-LSC | 0.75 | 0.8 | 0.76 | 0.81 | 0.77 | 0.82 | |
SPAT-REG | 0.75 | 0.81 | 0.76 | 0.82 | 0.77 | 0.83 | |
Vehicle Silhouettes | L2REG | 0.67 | 0.73 | 0.68 | 0.74 | 0.69 | 0.75 |
ENTR-T | 0.70 | 0.76 | 0.71 | 0.77 | 0.72 | 0.78 | |
SP-IN | 0.71 | 0.76 | 0.72 | 0.77 | 0.75 | 0.78 | |
PEN-LSC | 0.73 | 0.77 | 0.74 | 0.78 | 0.73 | 0.79 | |
SPAT-REG | 0.72 | 0.78 | 0.73 | 0.79 | 0.74 | 0.8 | |
LANDSAT Satellite | L2REG | 0.71 | 0.77 | 0.72 | 0.78 | 0.73 | 0.79 |
ENTR-T | 0.74 | 0.8 | 0.75 | 0.81 | 0.76 | 0.82 | |
SP-IN | 0.76 | 0.82 | 0.77 | 0.83 | 0.78 | 0.84 | |
PEN-LSC | 0.76 | 0.82 | 0.77 | 0.83 | 0.78 | 0.84 | |
SPAT-REG | 0.76 | 0.83 | 0.77 | 0.84 | 0.78 | 0.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bedalli, E.; Hajrulla, S.; Rada, R.; Kosova, R. Fuzzy Clustering Approaches Based on Numerical Optimizations of Modified Objective Functions. Algorithms 2025, 18, 327. https://doi.org/10.3390/a18060327
Bedalli E, Hajrulla S, Rada R, Kosova R. Fuzzy Clustering Approaches Based on Numerical Optimizations of Modified Objective Functions. Algorithms. 2025; 18(6):327. https://doi.org/10.3390/a18060327
Chicago/Turabian StyleBedalli, Erind, Shkelqim Hajrulla, Rexhep Rada, and Robert Kosova. 2025. "Fuzzy Clustering Approaches Based on Numerical Optimizations of Modified Objective Functions" Algorithms 18, no. 6: 327. https://doi.org/10.3390/a18060327
APA StyleBedalli, E., Hajrulla, S., Rada, R., & Kosova, R. (2025). Fuzzy Clustering Approaches Based on Numerical Optimizations of Modified Objective Functions. Algorithms, 18(6), 327. https://doi.org/10.3390/a18060327