Adjustment Algorithm for Free Station Control Network of Ultra-Large Deepwater Jacket
Abstract
:1. Introduction
2. Materials and Method
2.1. Data Processing Flow
2.2. Algorithmic Principle
2.2.1. Least Squares and Indirect Adjustment
2.2.2. Observation Equations of Free Station Control Network
2.2.3. Classic Free Network Adjustment and Constraint Adjustment
2.2.4. Quasi-Stable Adjustment
2.2.5. Coordinate Similarity Transformation
3. Results and Discussion
3.1. An Overview of the Control Network
3.1.1. The First Phase of Observation
3.1.2. The Second Phase of Observation
3.2. Comparison of Different Adjustment Schemes
3.2.1. Adjustment Results of the First Phase
3.2.2. Adjustment Results via Traditional Method
3.2.3. Adjustment Results via the Proposed Method
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, S.T.; Li, H.C.; Zhang, J.; Yang, S.T.; Zhang, T.Y. Shaking table test and numerical simulation of jacket offshore platform considering soil-water-structure interaction. Ocean Eng. 2024, 313, 119542. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, Q.; Yang, X. A method to eliminate the influence of earth curvature on the elevation of very large jackets. Nat. Gas Oil 2022, 40, 132–138. [Google Scholar]
- Ma, G.; Jiao, F.; Zhao, P. Discussion on precision control method for 300 m class deepwater jacket assembly. Guangdong Shipbuild. 2024, 43, 82–84+48. [Google Scholar]
- Krawczyk, K. Influence of reference stations on the stability of the geodetic control network during deformation determination in the area of Kadzielnia in Kielce. Rep. Geod. Geoinformat. 2023, 115, 19–26. [Google Scholar] [CrossRef]
- Velsink, H. Testing Methods for Adjustment Models with Constraints. J. Surv. Eng. 2018, 144, 04018009. [Google Scholar] [CrossRef]
- Wu, D. Compatibility test for known points of GNSS control network with rank-loss free network adjustment. Surv. Mapp. Sci. 2019, 44, 120–125. [Google Scholar]
- Song, Y. A new iterative algorithm for a rank-deficient adjustment model with inequality constraints. J. Geod. 2019, 93, 2637–2649. [Google Scholar] [CrossRef]
- Li, J.; Zhang, X.; Chen, X.; Jiang, Y.; Tan, S. Research on Route Horizontal Control Network Retesting Update Index of High-Speed Railways. J. Geomat. 2021, 46, 75–78. [Google Scholar]
- Zhao, Y. Study Some Theoretical Problems in Analyzing Dam Deformation Monitoring Data. Master’s Thesis, Tongji University, Shanghai, China, 2007. [Google Scholar]
- Su, X.; Li, Z.; Huang, H. Application of rank-loss free network adjustment in metro tunnel protection zone. Mapp. Spat. Geogr. Inf. 2016, 39, 180–181+5. [Google Scholar]
- Fan, B.; Li, G.; Li, P.; Yang, Z. Quasi-Stable Adjustment of Laser Interferometer 3D Rank Defect Network. J. Geomat. Sci. Technol. 2014, 31, 459–462. [Google Scholar]
- Su, X.; Hu, H.; Ma, X. Key techniques for stability analysis and data maintenance of deformation monitoring network. Geospat. Inf. 2023, 21, 22–26. [Google Scholar]
- Qi, C.; Dang, Y.; Yang, Q. Research and Application of Quasi-Stable Adjustment Method in GNSS Time Series Restoration. J. Geod. Geodyn. 2024, 44, 16–20+26. [Google Scholar]
- Wang, P.; Xing, C.; Pan, X.; Zhou, X.; Shi, B. Microdeformation monitoring by permanent scatterer GB-SAR interferometry based on image subset series with short temporal baselines: The Geheyan Dam case study. Measurement 2021, 184, 109944. [Google Scholar] [CrossRef]
- Li, L.; Yang, G.; Zheng, Z.; Yin, H.; Jia, Y. Dynamic Adjustment of Re-measurement Leveling Network and Its Application in Vertical Crustal Deformation in Sichuan-Yunnan Region. J. Seismol. Res. 2020, 43, 87–94. [Google Scholar]
- Guo, Y.; Li, Z. Weighted quasi-stable combined adjustment of two-order horizontal control network using posteriori variance to determine the weight. Meas. Sci. Technol. 2021, 32, 115027. [Google Scholar] [CrossRef]
- Liang, W.; Li, J.; Zhou, H. Retesting and Stability Analysis of Control Network of a Railway Project. Surv. Mapp. Spat. Geogr. Inf. 2013, 36, 189–191+193. [Google Scholar]
- Huang, H. Research on the Key Technology of Construction Control Network Retesting and Settlement Observation During the Construction Period of Very Large Bridges. Master’s Thesis, Southeast University, Nanjing, China, 2017. [Google Scholar]
- Su, J. Stability analysis of control network. Urban Surv. 2000, 4, 14–16. [Google Scholar]
- Huang, S. Stability analysis of monitoring network. Surv. Mapp. Inf. Eng. 2001, 1, 16–19. [Google Scholar]
- Liu, Z.; Liu, C.; Cao, C. Study a new method of stability analysis of high-speed railway CPI control network based on multi-limit difference. Railw. Surv. 2015, 41, 10–13. [Google Scholar]
- Cheng, P.; Cheng, Y.; Wang, X.; Wu, S.; Xu, Y. Realization of an Optimal Dynamic Geodetic Reference Frame in China: Methodology and Applications. Engineering 2020, 6, 879–897. [Google Scholar] [CrossRef]
- de França, R.M.; Klein, I.; Veiga, L.A.K. Horizontal Reference Network Densification by Multiple Free Stations. J. Surv. Eng. 2023, 149, 116250. [Google Scholar] [CrossRef]
- Gao, W.Z.; Li, Z.; Chen, Q.S.; Jiang, W.P.; Feng, Y.M. Modelling and prediction of GNSS time series using GBDT, LSTM and SVM machine learning approaches. J. Geod. 2022, 96, 71. [Google Scholar] [CrossRef]
- Benzao, T.; Weining, Q.; Yibin, Y. Error Theory ang Fundation of Surveying Adjustment; Wuhan University Press: Wuhan, China, 2019; p. 337. [Google Scholar]
Point Name | x (m) | y (m) | mx (mm) | my (mm) | mp (mm) |
---|---|---|---|---|---|
S1 | 553.915 | 1090.548 | 0.8 | 1.3 | 1.5 |
S2 | 564.461 | 970.895 | 0.5 | 1.0 | 1.1 |
S3 | 600.744 | 759.503 | 0.8 | 1.2 | 1.4 |
S4 | 679.336 | 748.647 | 1.0 | 1.1 | 1.5 |
S5 | 661.115 | 898.152 | 0.8 | 1.1 | 1.4 |
S6 | 655.618 | 1095.404 | 0.9 | 1.2 | 1.6 |
S7 | 500.000 | 1074.986 | 0.0 | 1.1 | 1.1 |
S8 | 500.000 | 800.000 | 0.0 | 0.0 | 0.0 |
Point Name | x (m) | y (m) | dx (cm) | dy (cm) | dp (cm) | mdp (cm) |
---|---|---|---|---|---|---|
S1 | 553.905 | 1090.550 | −1.0 | 0.2 | 1.0 | 0.3 |
S3 | 600.749 | 759.511 | 0.5 | 0.8 | 0.9 | 0.4 |
S4 | 679.343 | 748.655 | 0.7 | 0.8 | 1.1 | 0.5 |
S5 | 661.112 | 898.160 | −0.3 | 0.8 | 0.9 | 0.4 |
S6 | 655.606 | 1095.413 | −1.2 | 0.9 | 1.5 | 0.4 |
S7 | 500.000 | 1074.986 | 0.0 | 0.0 | 0.0 | 0.1 |
S8 | 500.000 | 800.000 | 0.0 | 0.0 | 0.0 | 0.0 |
Constraint Point | dp (cm) | mdp (mm) | ||||
---|---|---|---|---|---|---|
Max | Min | Mean | Max | Min | Mean | |
S8 + S1 | 1.5 | 0.9 | 1.1 | 4.4 | 3.0 | 3.5 |
S8 + S3 | 1.0 | 0.2 | 0.5 | 7.7 | 4.8 | 6.6 |
S8 + S4 | 2.5 | 0.7 | 1.4 | 6.2 | 2.8 | 4.9 |
S8 + S5 | 1.5 | 0.1 | 0.6 | 5.0 | 3.2 | 4.2 |
S8 + S6 | 1.4 | 0.3 | 0.6 | 4.2 | 2.9 | 2.8 |
S8 + S7 | 1.2 | 0.1 | 0.5 | 4.8 | 3.1 | 3.9 |
Point Name | x (m) | y (m) | dx (cm) | dy (cm) | dp (cm) | mdp (cm) |
---|---|---|---|---|---|---|
S1 | 553.905 | 1090.552 | −1.0 | 0.4 | 1.1 | 0.2 |
S3 | 600.749 | 759.512 | 0.5 | 0.9 | 1.0 | 0.2 |
S4 | 679.342 | 748.656 | 0.6 | 0.9 | 1.1 | 0.4 |
S5 | 661.111 | 898.161 | −0.4 | 0.9 | 1.0 | 0.3 |
S6 | 655.606 | 1095.415 | −1.2 | 1.1 | 1.6 | 0.3 |
S7 | 500.000 | 1074.988 | 0.0 | 0.2 | 0.2 | 0.2 |
S8 | 500.000 | 800.000 | 0.0 | 0.0 | 0.0 | 0.0 |
Point Name | Vx (mm) | Vy (mm) | Vp (mm) | m0 (mm) |
---|---|---|---|---|
S1 | 1.5 | 0.3 | 1.5 | 3.3 |
S3 | −0.8 | −2.0 | 2.2 | 3.3 |
S4 | −1.6 | 1.1 | 1.9 | 3.3 |
S5 | 2.7 | 0.0 | 2.7 | 3.3 |
S6 | 3.0 | −2.8 | 4.1 | 3.3 |
S7 | −7.7 | 0.3 | 7.7 | 3.3 |
S8 | 2.9 | 3.0 | 4.2 | 3.3 |
Point Name | Stable | x (m) | y (m) | Difference | mdp (cm) | ||
---|---|---|---|---|---|---|---|
dx (cm) | dy (cm) | dp (cm) | |||||
S1 | Y | 553.916 | 1090.547 | 0.2 | −0.1 | 0.2 | 0.2 |
S3 | Y | 600.744 | 759.505 | 0.0 | 0.2 | 0.2 | 0.2 |
S4 | Y | 679.337 | 748.646 | 0.2 | −0.1 | 0.2 | 0.2 |
S5 | Y | 661.113 | 898.152 | −0.1 | 0.0 | 0.1 | 0.2 |
S6 | Y | 655.617 | 1095.405 | 0.0 | 0.1 | 0.1 | 0.3 |
S7 | N | 500.010 | 1074.986 | 1.0 | 0. | 1.1 | 0.3 |
S8 | Y | 499.997 | 799.998 | −0.2 | −0.2 | 0.3 | 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Shu, W.; Wang, H.; Li, H.; Wang, Y.; Zhang, D.; Liu, J.; Wang, D.; Xiao, W. Adjustment Algorithm for Free Station Control Network of Ultra-Large Deepwater Jacket. Algorithms 2025, 18, 292. https://doi.org/10.3390/a18050292
Yang X, Shu W, Wang H, Li H, Wang Y, Zhang D, Liu J, Wang D, Xiao W. Adjustment Algorithm for Free Station Control Network of Ultra-Large Deepwater Jacket. Algorithms. 2025; 18(5):292. https://doi.org/10.3390/a18050292
Chicago/Turabian StyleYang, Xianyang, Wei Shu, Huoping Wang, Haifeng Li, Yi Wang, Di Zhang, Jiayu Liu, Deyang Wang, and Wangsui Xiao. 2025. "Adjustment Algorithm for Free Station Control Network of Ultra-Large Deepwater Jacket" Algorithms 18, no. 5: 292. https://doi.org/10.3390/a18050292
APA StyleYang, X., Shu, W., Wang, H., Li, H., Wang, Y., Zhang, D., Liu, J., Wang, D., & Xiao, W. (2025). Adjustment Algorithm for Free Station Control Network of Ultra-Large Deepwater Jacket. Algorithms, 18(5), 292. https://doi.org/10.3390/a18050292