Simulation and Optimization of Multi-Phase Terminal Trajectory for Three-Dimensional Anti-Ship Missiles Based on Hybrid MOPSO
Abstract
:1. Introduction
2. Theoretical Basis
2.1. The Terminal Trajectory of Anti-Ship Missiles
2.2. MOPSO-h Algorithm and Applications
2.2.1. Algorithm Principles
2.2.2. Design Variables
3. Simulation Experiment
3.1. Scene Configuration
3.2. Algorithm Configuration
4. Experimental Results Analysis
4.1. Algorithm Performance
4.2. Trajectory Analysis
4.3. Error Impact Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MOPSO-h | Hybrid multi-objective particle swarm optimization algorithm |
NLP | Non-linear programming |
GA | Genetic algorithms |
PSO | Particle swarm optimization |
ACO | Ant colony optimization |
PD | Proportional derivative |
SNR | Signal-to-noise ratio |
NSGA-II | Non-dominated sorting genetic algorithm-II |
NSGA-III | Non-dominated sorting genetic algorithm-III |
MOEA/D | Multi-objective evolutionary algorithm based on decomposition |
HMS | Hybrid mutation strategy |
HV | Hypervolume |
MMD | Mean miss distance |
ETP | Extra time percentage |
TLS | Terminal landing speed |
TLA | Terminal landing angle |
PSA | Peak surge altitude |
TC | Time cost |
The azimuth angles and elevation angles of the anti−ship missile in | |
Projection of the line-of-sight vector on the , , and axes in | |
In , the azimuth angles and elevation angles of the anti-ship missile | |
In , the azimuth angles’ and elevation angles’ speed of the anti-ship missile | |
In , the azimuth angles’ and elevation angles’ accelerations of the anti-ship missile | |
Current cruise speed of the anti-ship missile | |
In , the azimuth angles of the target relative to the anti-ship missile | |
In , the random error in the azimuth angles of the target relative to the anti-ship missile | |
Total task duration | |
Planning frequency | |
Earth radius | |
Particle counts | |
Iteration count interval | |
The trajectory change in altitude of the anti-ship missile | |
Random numbers within the interval [0, 1] | |
Maximum normal overload of the anti-ship missile | |
Distance thresholds for each stage | |
Adjustment coefficient for particle speed and position update | |
In , the speed of the anti-ship missile on each coordinate axis | |
Angle control coefficients | |
Initial distance between the missile and the target | |
Maximum task total time | |
Collision distance | |
Iteration counts | |
The number of global leaders in a current population | |
Initial variance of the Gaussian mutation operation |
References
- Abbas, A. Hypersonic Weapons and the Future of Strategic Stability between the Nuclear Rivals. J. Secur. Strateg. Anal. 2024, 10, 59–78. [Google Scholar]
- Li, C.; Deng, B.; Zhang, T. Terminal guidance law of small anti-ship missile based on DDPG. In Proceedings of the 2020 International Conference on Image, Video Processing and Artificial Intelligence, Shanghai, China, 21–23 August 2020; SPIE: Bellingham, WA, USA, 2020; Volume 11584. [Google Scholar]
- Zhang, Y.; Lv, J.; Li, J.; Luo, H. Analysis of anti-ship missile combat effectiveness evaluation based on GA-SVM model. In Proceedings of the 2024 IEEE 3rd International Conference on Electrical Engineering, Big Data and Algorithms (EEBDA), Changchun, China, 27–29 February 2024; pp. 1412–1415. [Google Scholar]
- Zhou, Q.; Dong, C.; Zhou, Q.; Qi, N. The trajectory of anti-ship ballistic missile design and simulation. In Proceedings of the 2015 Fifth International Conference on Instrumentation and Measurement, Computer, Communication and Control (IMCCC), Qinhuangdao, China, 18–20 September 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 373–377. [Google Scholar]
- Shin, H.S.; Lee, J.I.; Cho, H.; Tsourdos, A. Trajectory modulation guidance law for anti-ship missiles. In Proceedings of the AIAA guidance, navigation, and control conference, Portland, OR, USA, 8–11 August 2011; p. 6710. [Google Scholar]
- Ender, T.; Leurck, R.F.; Weaver, B.; Miceli, P.; Blair, W.D.; West, P.; Mavris, D. Systems-of-systems analysis of ballistic missile defense architecture effectiveness through surrogate modeling and simulation. IEEE Syst. J. 2010, 4, 156–166. [Google Scholar] [CrossRef]
- Wang, L.; Yang, G.; Sun, Q.; Ge, J. An uncertain optimization method for overall ballistics based on stochastic programming and a neural network surrogate model. Eng. Optim. 2019, 51, 663–679. [Google Scholar] [CrossRef]
- Forden, G. Gui_missile_flyout: A general program for simulating ballistic missiles. Sci. Glob. Secur. 2007, 15, 133–146. [Google Scholar] [CrossRef]
- Luo, J.; Meng, J.; Yu, N. Configuration Optimization of a Skippable Anti-Ship Missile Considering Initial Kinematic Parameters. AIAA J. 2024, 62, 1094–1104. [Google Scholar] [CrossRef]
- Dung, B.Q.; Tinh, C.H.; Thuc, N.C.; Dan, D.M. The influence of trajectory design parameters on miss distance and survivability of anti-ship missiles. In Proceedings of the 2021 21st International Conference on Control, Automation and Systems (ICCAS), Jeju, Republic of Korea, 12–15 October 2021; pp. 1496–1501. [Google Scholar]
- Jiang, H.; Mei, Y.; Yu, J.; Li, J.; Chen, X. Optimization design of the trajectory about gun-launched missile based on SQP. In Proceedings of the 33rd Chinese Control Conference, Nanjing, China, 28–30 July 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 7555–7560. [Google Scholar]
- Adsiz, M.A.; Kutay, A.T. Multidisciplinary optimization and performance analysis tool for ballistic missiles. In Proceedings of the AIAA Scitech 2019 Forum, San Diego, CA, USA, 7–11 January 2019. [Google Scholar]
- Zhang, P.; Wu, D.; Gong, S. Trajectory optimization for aerodynamically controlled missiles by chance-constrained sequential convex programming. Aerosp. Sci. Technol. 2024, 153, 109464. [Google Scholar] [CrossRef]
- Hong, S.M.; Tahk, M.J.; Lee, C.H. Stage optimization of anti-air missiles using practical guidance laws. Int. J. Aeronaut. Space Sci. 2020, 21, 394–403. [Google Scholar] [CrossRef]
- Zandavi, S.M. Surface-to-air missile path planning using genetic and PSO algorithms. J. Theor. Appl. Mech. 2017, 55, 801–812. [Google Scholar] [CrossRef]
- Sahoo, S.; Dalei, R.K.; Rath, S.K.; Sahu, U.K. Selection of PSO parameters based on Taguchi design-ANOVA-ANN methodology for missile gliding trajectory optimization. Cogn. Robot. 2023, 3, 158–172. [Google Scholar] [CrossRef]
- Kumar, G.N.; Penchalaiah, D.; Sarkar, A.K.; Talole, S.E. Hypersonic boost glide vehicle trajectory optimization using genetic algorithm. IFAC-PapersOnLine 2018, 51, 118–123. [Google Scholar] [CrossRef]
- Özdil, B.D. Trajectory Optimization of a Tactical Missile by Using Genetic Algorithm. Master’s Thesis, Middle East Technical University, Ankara, Türkiye, 2018. [Google Scholar]
- Zheng, X.; Gao, Y.; Jing, W.X.; Wang, Y. Multidisciplinary integrated design of long-range ballistic missile using PSO algorithm. J. Syst. Eng. Electron. 2020, 31, 335–349. [Google Scholar] [CrossRef]
- Kiyak, Z.J.; Hartfield, R.J.; Ledlow, T.W. Missile trajectory optimization using a modified ant colony algorithm. In Proceedings of the 2014 IEEE Aerospace Conference, Big Sky, MT, USA, 1–8 March 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 1–8. [Google Scholar]
- Xu, S.; Bi, W.; Zhang, A.; Wang, Y. A deep reinforcement learning approach incorporating genetic algorithm for missile path planning. Int. J. Mach. Learn. Cybern. 2024, 15, 1795–1814. [Google Scholar] [CrossRef]
- Liu, Y.; Wei, Y.; Wang, C.; Wu, H. Trajectory optimization for adaptive deformed wheels to overcome steps using an improved hybrid genetic algorithm and an adaptive particle swarm optimization. Mathematics 2024, 12, 2077. [Google Scholar] [CrossRef]
- Ferro, C.; Cafaro, M.; Maggiore, P. Optimizing Solid Rocket Missile Trajectories: A Hybrid Approach Using an Evolutionary Algorithm and Machine Learning. Aerospace 2024, 11, 912. [Google Scholar] [CrossRef]
- Huang, G.Q.; Lu, Y.P.; Nan, Y. A survey of numerical algorithms for trajectory optimization of flight vehicles. Sci. China Technol. Sci. 2012, 55, 2538–2560. [Google Scholar] [CrossRef]
- Isaac, A.; Willett, P.; Bar-Shalom, Y. Detecting and tracking separating objects using direct monopulse measurements. In Proceedings of the 2008 IEEE Aerospace Conference, Big Sky, MT, USA, 1–8 March 2008; IEEE: Piscataway, NJ, USA, 2008; pp. 1–11. [Google Scholar]
- Zhang, G.; Zhu, M.; Zhao, Z.; Li, X.-P. Trajectory optimization for Missile-borne SAR imaging phase via Gauss Pseudospectral Method. In Proceedings of the 2011 IEEE CIE International Conference on Radar, Chengdu, China, 24–27 October 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 867–870. [Google Scholar]
- Su, H.; Song, D.; Yang, Q.; Chen, L.; Yang, B. Simulation of infrared radiation characteristics of ballistic missiles in all stages based on all-directional detectors. In Proceedings of the AOPC 2024: Infrared Technology and Applications, Beijing, China, 23–26 July 2024; SPIE: Bellingham, WA, USA, 2024; pp. 49–59. [Google Scholar]
- Mondal, S.; Padhi, R. State and input constrained missile guidance using spectral model predictive static programming. In Proceedings of the 2018 AIAA Guidance, Navigation, and Control Conference, Kissimmee, FL, USA, 8–12 January 2018. [Google Scholar]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef]
- Hou, Y.; Wu, N.Q.; Li, Z.W.; Zhang, Y.; Qu, T.; Zhu, Q. Many-objective optimization for scheduling of crude oil operations based on NSGA-III with consideration of energy efficiency. Swarm Evol. Comput. 2020, 57, 100714. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, H. MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 2007, 11, 712–731. [Google Scholar] [CrossRef]
- He, X.; Fu, X.; Yang, Y. Energy-efficient trajectory planning algorithm based on multi-objective PSO for the mobile sink in wireless sensor networks. IEEE Access 2019, 7, 176204–176217. [Google Scholar] [CrossRef]
- McClymont, K.; Keedwell, E. Deductive sort and climbing sort: New methods for non-dominated sorting. Evol. Comput. 2012, 20, 1–26. [Google Scholar] [CrossRef]
- Shang, K.; Ishibuchi, H.; He, L.; Pang, L.M. A survey on the hypervolume indicator in evolutionary multiobjective optimization. IEEE Trans. Evol. Comput. 2020, 25, 1–20. [Google Scholar] [CrossRef]
- Li, S.; Zhong, S.; Pei, Z.; Yi, W.; Chen, Y.; Wang, C. Multi-objective reconfigurable production line scheduling forsmart home appliances. J. Syst. Eng. Electron. 2021, 32, 297–317. [Google Scholar]
Model | MOPSO-h | ||
---|---|---|---|
Variable | Value | Variable | Value |
0.02 rad | I | 300 | |
0.01 rad | N | 50 | |
0.01 rad | NA | 10 | |
R | 6371 km | p | 0.9 |
1 m | a1 | 2 | |
15 g, g = 9.8 m/s2 | a2 | 2 | |
2 Ma | a3 | ||
D | 5 m | aHV | 0.05 |
F | 100 Hz | r1 | |
60 s | r2 | ||
[0, 1200 m] | 0.1 | ||
[0, 10] | 5 |
Algorithm | MOPSO-h | MOPSO | MOEA/D | NSGA-III | PSO | ACO | GA |
---|---|---|---|---|---|---|---|
MMD (m) | 2.34 (1) | 2.90 (5) | 2.40 (2) | 3.02 (6) | 2.88 (4) | 2.46 (3) | 3.27 (7) |
ETP (%) | 8.91 (2) | 9.88 (4) | 9.02 (3) | 10.38 (6) | 8.42 (1) | 10.70 (7) | 10.22 (5) |
TLS (m/s) | −542.1 (4) | −548.9 (3) | −521.2 (6) | −628.5 (1) | −493.7 (7) | −526.6 (5) | −619.3 (2) |
TLA (°) | 85.68 (2) | 85.23 (4) | 85.17 (5) | 86.64 (1) | 84.07 (7) | 84.99 (6) | 85.41 (3) |
PSA (m) | 999.6 (5) | 952.3(4) | 797.3 (2) | 1197.1 (7) | 703.2 (1) | 839.0 (3) | 1185.8 (6) |
CT (s) | 3184 | 3037 | 3058 | 3235 | 2856 | 2698 | 2763 |
Score | 14 | 20 | 18 | 21 | 20 | 24 | 23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, J.; You, S.; Hua, D.; Xu, Z.; Wang, P.; Yang, Z. Simulation and Optimization of Multi-Phase Terminal Trajectory for Three-Dimensional Anti-Ship Missiles Based on Hybrid MOPSO. Algorithms 2025, 18, 278. https://doi.org/10.3390/a18050278
Sun J, You S, Hua D, Xu Z, Wang P, Yang Z. Simulation and Optimization of Multi-Phase Terminal Trajectory for Three-Dimensional Anti-Ship Missiles Based on Hybrid MOPSO. Algorithms. 2025; 18(5):278. https://doi.org/10.3390/a18050278
Chicago/Turabian StyleSun, Jiandong, Shixun You, Di Hua, Zhiwei Xu, Peiyao Wang, and Zihang Yang. 2025. "Simulation and Optimization of Multi-Phase Terminal Trajectory for Three-Dimensional Anti-Ship Missiles Based on Hybrid MOPSO" Algorithms 18, no. 5: 278. https://doi.org/10.3390/a18050278
APA StyleSun, J., You, S., Hua, D., Xu, Z., Wang, P., & Yang, Z. (2025). Simulation and Optimization of Multi-Phase Terminal Trajectory for Three-Dimensional Anti-Ship Missiles Based on Hybrid MOPSO. Algorithms, 18(5), 278. https://doi.org/10.3390/a18050278