Solving Multidimensional Partial Differential Equations Using Efficient Quantum Circuits
Abstract
:1. Introduction
2. Background
2.1. Classical-to-Quantum Encoding (C2Q)
2.2. Numerical Instantiation
2.3. Column-by-Column Decomposition (CCD)
2.4. Decoherence Time
3. Related Work
4. Materials and Methods
- Proposed an accurate, scalable, and time-efficient algorithm for solving multidimensional Partial Differential Equations (PDEs).
- Evaluated the proposed algorithm on noise-free and noisy simulators, as well as on hardware emulators and real quantum hardware from IBM-Qiskit.
- Compared the proposed work with a variational algorithms-based PDE solver in terms of accuracy, scalability, and total execution time, using the Poisson equation as a case study.
- Presented the theoretical execution time comparison of the circuits generated by our algorithm for hardware emulator and real quantum hardware with the decoherence times of these systems.
4.1. Proposed Methodology: Scalable and Accurate PDE Solver Algorithm
4.2. Multidimensional Poisson Equation
4.2.1. 1D Poisson Equation
4.2.2. 2D Poisson Equation
4.2.3. 3D Poisson Equation
4.2.4. 4D Poisson Equation
Algorithm 1 Generate matrix and vector for upto 4D Poisson equation |
|
5. Results
5.1. Experimental Setup
5.1.1. Hardware Testbed
5.1.2. Software Frameworks
5.1.3. Test Case Datasets
- 1D Poisson Equation: A source function , distance with the boundary values and .
- 2D Poisson Equation: A source function , distance with boundary values (BVs) = 0, on both x and y axes.
- 3D Poisson Equation: A source , distance with boundary values (BVs) = 0, in all three axes.
5.2. Experimental Results
5.2.1. 1D Poisson Equation Results
Noise-Free and Noisy Simulation
Hardware Emulation
Real Quantum Hardware
5.2.2. 2D Poisson Equation Results
Noise-Free and Noisy Simulation
Hardware Emulation
Real Quantum Hardware
5.2.3. 3D Poisson Equation Results
Noise-Free and Noisy Simulation
Real Quantum Hardware
5.3. Execution Time and Decoherence Constraint for Multidimensional Poisson on Real Quantum Hardware
Execution Time and Decoherence Constraint for 1D Poisson Equation
Execution Time and Decoherence Constraint for 2D Poisson Equation
Execution Time and Decoherence Constraint for 3D Poisson Equation
6. Discussion
6.1. Higher Accuracy
6.2. Total Execution Time and Scalability
6.3. Complexity Comparison of Proposed Approach with Classical Technique
6.4. FDM Coefficient Matrix for Multidimensional Poisson Equation
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Quantum Computing Basics
Appendix A.1. Quantum Bits and States
Appendix A.2. Quantum Gates
- Hadamard Gate
- Controlled-NOT (CNOT) Gate
- SWAP Gate
- Y-Rotation Gate
- Z-Rotation Gate
- Quantum Measurement
Appendix B. Classical Preprocessing
Appendix B.1. Finite Difference Method (FDM)
Appendix B.2. Polar Decomposition
Appendix B.3. Singular Value Decomposition (SVD)
References
- Klawonn, A.; Lanser, M.; Rheinbach, O. Toward extremely scalable nonlinear domain decomposition methods for elliptic partial differential equations. Siam J. Sci. Comput. 2015, 37, C667–C696. [Google Scholar]
- Evans, L.C. Partial Differential Equations; American Mathematical Society: Providence, RI, USA, 2022; Volume 19. [Google Scholar]
- Toivanen, J.; Avery, P.; Farhat, C. A multilevel FETI-DP method and its performance for problems with billions of degrees of freedom. Int. J. Numer. Methods Eng. 2018, 116, 661–682. [Google Scholar]
- Schwab, C.; Gittelson, C.J. Sparse tensor discretizations of high-dimensional parametric and stochastic PDEs. Acta Numer. 2011, 20, 291–467. [Google Scholar]
- Waldrop, M.M. The chips are down for Moore’s law. Nat. News 2016, 530, 144. [Google Scholar]
- Tosti Balducci, G.; Chen, B.; Möller, M.; Gerritsma, M.; De Breuker, R. Review and perspectives in quantum computing for partial differential equations in structural mechanics. Front. Mech. Eng. 2022, 8, 914241. [Google Scholar]
- Anderson, J.; Kayraklioglu, E.; Imani, H.R.; Miscuglio, M.; Sorger, V.J.; El-Ghazawi, T. Virtualizing analog mesh computers: The case of a photonic PDE solving accelerator. In Proceedings of the 2020 International Conference on Rebooting Computing (ICRC), Atlanta, GA, USA, 1–3 December 2020; pp. 133–142. [Google Scholar]
- Smith, J.D.; Severa, W.; Hill, A.J.; Reeder, L.; Franke, B.; Lehoucq, R.B.; Parekh, O.D.; Aimone, J.B. Solving a steady-state PDE using spiking networks and neuromorphic hardware. In Proceedings of the International Conference on Neuromorphic Systems 2020, Oak Ridge, TN, USA, 28–30 July 2020; pp. 1–8. [Google Scholar]
- El-Araby, E.; Chaudhary, M.; Islam, I.U.; Levy, D.; Kneidel, D.; Jeng, M.; Nobel, A.; Jha, V. Practical Applications of Quantum Computing. In Quantum Computing: Innovations and Applications in Modern Research; IntechOpen: London, UK, 2024; p. 85. [Google Scholar]
- Bharti, K.; Cervera-Lierta, A.; Kyaw, T.H.; Haug, T.; Alperin-Lea, S.; Anand, A.; Degroote, M.; Heimonen, H.; Kottmann, J.S.; Menke, T.; et al. Noisy intermediate-scale quantum algorithms. Rev. Mod. Phys. 2022, 94, 015004. [Google Scholar]
- Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Rebentrost, P.; Mohseni, M.; Lloyd, S. Quantum support vector machine for big data classification. Phys. Rev. Lett. 2014, 113, 130503. [Google Scholar]
- Tennie, F.; Laizet, S.; Lloyd, S.; Magri, L. Quantum computing for nonlinear differential equations and turbulence. Nat. Rev. Phys. 2025, 1–11. [Google Scholar] [CrossRef]
- Harrow, A.W.; Hassidim, A.; Lloyd, S. Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 2009, 103, 150502. [Google Scholar]
- Nagel, J.R. Solving the Generalized Poisson Equation Using the Finite-Difference Method (FDM); Lecture Notes; Department of Electrical and Computer Engineering, University of Utah: Salt Lake City, UT, USA, 2011. [Google Scholar]
- Preskill, J. Quantum computing in the NISQ era and beyond. Quantum 2018, 2, 79. [Google Scholar]
- Sato, Y.; Kondo, R.; Koide, S.; Takamatsu, H.; Imoto, N. Variational quantum algorithm based on the minimum potential energy for solving the Poisson equation. Phys. Rev. A 2021, 104, 052409. [Google Scholar] [CrossRef]
- Trahan, C.J.; Loveland, M.; Davis, N.; Ellison, E. A variational quantum linear solver application to discrete finite-element methods. Entropy 2023, 25, 580. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.; Kabel, M. Performance study of variational quantum algorithms for solving the Poisson equation on a quantum computer. Phys. Rev. Appl. 2023, 20, 014054. [Google Scholar]
- Liu, H.L.; Wu, Y.S.; Wan, L.C.; Pan, S.J.; Qin, S.J.; Gao, F.; Wen, Q.Y. Variational quantum algorithm for the Poisson equation. Phys. Rev. A 2021, 104, 022418. [Google Scholar]
- El-Araby, E.; Mahmud, N.; Jeng, M.J.; MacGillivray, A.; Chaudhary, M.; Nobel, M.A.I.; Islam, S.I.U.; Levy, D.; Kneidel, D.; Watson, M.R.; et al. Towards complete and scalable emulation of quantum algorithms on high-performance reconfigurable computers. IEEE Trans. Comput. 2023, 72, 2350–2364. [Google Scholar]
- Younis, E.; Iancu, C.C.; Lavrijsen, W.; Davis, M.; Smith, E. Berkeley Quantum Synthesis Toolkit (bqskit) v1; Technical Report; Lawrence Berkeley National Laboratory (LBNL): Berkeley, CA, USA, 2021. [Google Scholar]
- Iten, R.; Colbeck, R.; Kukuljan, I.; Home, J.; Christandl, M. Quantum circuits for isometries. Phys. Rev. A 2016, 93, 032318. [Google Scholar]
- IBM Quantum. Available online: https://quantum-computing.ibm.com (accessed on 28 February 2025).
- Shende, V.V.; Bullock, S.S.; Markov, I.L. Synthesis of Quantum Logic Circuits. In Proceedings of the 2005 Asia and South Pacific Design Automation Conference, Shanghai, China, 18–21 January 2005; pp. 272–275. [Google Scholar]
- IBM Quantum. Qiskit: An Open-Source Framework for Quantum Computing. Available online: https://www.ibm.com/quantum/qiskit (accessed on 28 February 2025).
- Sivarajah, S.; Dilkes, S.; Cowtan, A.; Simmons, W.; Edgington, A.; Duncan, R. t| ket>: A retargetable compiler for NISQ devices. Quantum Sci. Technol. 2020, 6, 014003. [Google Scholar]
- Cirq, a Python Framework for Creating, Editing, and Invoking Noisy Intermediate Scale Quantum (NISQ) Circuits. Available online: https://github.com/quantumlib/Cirq (accessed on 28 February 2025).
- Vatan, F.; Williams, C. Optimal quantum circuits for general two-qubit gates. Phys. Rev. A—At. Mol. Opt. Phys. 2004, 69, 032315. [Google Scholar]
- Möttönen, M.; Vartiainen, J.J.; Bergholm, V.; Salomaa, M.M. Quantum circuits for general multiqubit gates. Phys. Rev. Lett. 2004, 93, 130502. [Google Scholar]
- Younis, E.; Iancu, C. Quantum circuit optimization and transpilation via parameterized circuit instantiation. In Proceedings of the 2022 IEEE International Conference on Quantum Computing and Engineering (QCE), Broomfield, CO, USA, 18–23 September 2022; pp. 465–475. [Google Scholar]
- Smith, E.; Davis, M.G.; Larson, J.; Younis, E.; Oftelie, L.B.; Lavrijsen, W.; Iancu, C. Leap: Scaling numerical optimization based synthesis using an incremental approach. Acm Trans. Quantum Comput. 2023, 4, 1–23. [Google Scholar]
- Schlosshauer, M. Quantum decoherence. Phys. Rep. 2019, 831, 1–57. [Google Scholar]
- Mahmud, N.; MacGillivray, A.; Chaudhary, M.; El-Araby, E. Decoherence-optimized circuits for multidimensional and multilevel-decomposable quantum wavelet transform. IEEE Internet Comput. 2021, 26, 15–25. [Google Scholar]
- Ithier, G.; Collin, E.; Joyez, P.; Meeson, P.; Vion, D.; Esteve, D.; Chiarello, F.; Shnirman, A.; Makhlin, Y.; Schriefl, J.; et al. Decoherence in a superconducting quantum bit circuit. Phys. Rev. B—Condens. Matter Mater. Phys. 2005, 72, 134519. [Google Scholar]
- Cerezo, M.; Arrasmith, A.; Babbush, R.; Benjamin, S.C.; Endo, S.; Fujii, K.; McClean, J.R.; Mitarai, K.; Yuan, X.; Cincio, L.; et al. Variational quantum algorithms. Nat. Rev. Phys. 2021, 3, 625–644. [Google Scholar]
- Childs, A.M.; Kothari, R.; Somma, R.D. Quantum algorithm for systems of linear equations with exponentially improved dependence on precision. SIAM J. Comput. 2017, 46, 1920–1950. [Google Scholar]
- Stewart, G.W. On the early history of the singular value decomposition. SIAM Rev. 1993, 35, 551–566. [Google Scholar]
- Chaudhary, M.; Islam, I.; Levy, D.; Nobel, A.; Kneidel, D.; Jha, V.; El-Araby, E. An Efficient Quantum Solver for Multidimensional Partial Differential Equations. In Proceedings of the International Conference on Emergent Quantum Technologies (ICEQT 2024), Las Vegas, NV, USA, 22–25 July 2024. [Google Scholar]
- IBM. Quantumcircuit.Unitary. 2024. Available online: https://docs.quantum.ibm.com/api/qiskit/qiskit.circuit.library.UnitaryGate (accessed on 28 February 2025).
- IBM. MatrixOp Class. 2023. Available online: https://docs.quantum.ibm.com/api/qiskit/0.32/qiskit.aqua.operators.primitive_ops.MatrixOp.to_pauli_op (accessed on 28 February 2025).
- IBM. EfficientSU2 Circuit. 2023. Available online: https://docs.quantum.ibm.com/api/qiskit/qiskit.circuit.library.EfficientSU2 (accessed on 28 February 2025).
- IBM. ADAM Optimizer. 2023. Available online: https://docs.quantum.ibm.com/api/qiskit/0.28/qiskit.algorithms.optimizers.ADAM (accessed on 28 February 2025).
- Cai, Z.; Babbush, R.; Benjamin, S.C.; Endo, S.; Huggins, W.J.; Li, Y.; McClean, J.R.; O’Brien, T.E. Quantum error mitigation. Rev. Mod. Phys. 2023, 95, 045005. [Google Scholar]
- IBM. IBM Debuts Next-Generation Quantum Processor & IBM Quantum System Two, Extends Roadmap to Advance Era of Quantum Utility IBM Press Release. 2023. Available online: https://newsroom.ibm.com/2023-12-04-IBM-Debuts-Next-Generation-Quantum-Processor-IBM-Quantum-System-Two%2C-Extends-Roadmap-to-Advance-Era-of-Quantum-Utility (accessed on 28 February 2025).
- Almeida, D.G.; Ferris, K.; Kanazawa, N.; Johnson, B.; Davis, R. New fractional gates reduce circuit depth for utility-scale workloads. IBM Research Blog, 15 January 2025. Available online: https://www.ibm.com/quantum/blog/fractional-gates (accessed on 28 February 2025).
- Holmes, Z.; Sharma, K.; Cerezo, M.; Coles, P.J. Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 2022, 3, 010313. [Google Scholar]
- Grimsley, H.R.; Barron, G.S.; Barnes, E.; Economou, S.E.; Mayhall, N.J. Adapt-vqe is insensitive to rough parameter landscapes and barren plateaus. arXiv 2022, arXiv:2204.07179. [Google Scholar]
- Qiang, J.; Paret, S. Poisson solvers for self-consistent multi-particle simulations. arXiv 2014, arXiv:1410.3633. [Google Scholar]
- Williams, C.P. Explorations in Quantum Computing; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Buffington, G. Polar Decomposition of a Matrix; University of Puget Sound: Tacoma, WA, USA, 2014; Available online: http://buzzard.ups.edu/courses/2014spring/420projects/math420-UPS-spring-2014-buffington-polar-decomposition.pdf (accessed on 28 February 2025).
- Higham, N.J. Computing the polar decomposition—With applications. SIAM J. Sci. Stat. Comput. 1986, 7, 1160–1174. [Google Scholar] [CrossRef]
- Ghosh, K. Encoding classical data into a quantum computer. arXiv 2021, arXiv:2107.09155. [Google Scholar]
Qubits | Variant 1 | Variant 2 | Decoherence Time (ibm_sherbrooke) (Seconds) | ||||
---|---|---|---|---|---|---|---|
Circuit Depth |
Expected Execution Time in Seconds (1 Shot) |
RMSE Error on ibm_sherbrooke (0.1M Shots) | Circuit Depth |
Expected Execution Time in Seconds (1 Shot) |
RMSE Error on ibm_sherbrooke (0.1M Shots) | ||
2 | 6336 | 0.000001408 | 0.029001683 | 6080 | 0.000001351 | 0.042829561 | 0.00017604 |
3 | 20,384 | 0.000004530 | 0.283069118 | 109,472 | 0.000024327 | 0.190385989 | 0.00017604 |
4 | 51,648 | 0.000011477 | 0.370884038 | 609,664 | 0.000135481 | 0.304748983 | 0.00017604 |
5 | 128,832 | 0.000028629 | 0.641067180 | 2,743,712 | 0.000609714 | 0.411210928 | 0.00017604 |
6 | 276,160 | 0.000061369 | 0.410911148 | 11,453,920 | 0.002545316 | 0.741372075 | 0.00017604 |
7 | 522,272 | 0.000116060 | 0.397343086 | 46,297,248 | 0.010288277 | Error: Ran too long | 0.00017604 |
8 | 1,057,504 | 0.000235001 | 0.550928878 | 184,545,600 | 0.041010133 | Error: Ran too long | 0.00017604 |
9 | 2,026,848 | 0.000450411 | 0.441182415 | 745,152,864 | 0.165589525 | Error: Ran too long | 0.00017604 |
10 | Unrealistically long compile time | Unrealistically long compile time | Unrealistically long compile time | 2,942,284,960 | 0.653841102 | Error: Ran too long | 0.00017604 |
Qubits | Variant 1 | Variant 2 | Decoherence Time (ibm_sherbrooke) (Seconds) | ||||
---|---|---|---|---|---|---|---|
Circuit Depth |
Expected Execution Time in Seconds (1 Shot) |
RMSE Error on ibm_sherbrooke (0.1M Shots) | Circuit Depth |
Expected Execution Time in Seconds (1 Shot) |
RMSE Error on ibm_sherbrooke (0.1M Shots) | ||
4 | 45,568 | 0.000010126 | 0.002316176 | 605,376 | 0.000134528 | 0.00481892 | 0.00017604 |
6 | 290,048 | 0.000064455 | 0.005506558 | 11,462,912 | 0.002547314 | 0.005950357 | 0.00017604 |
8 | 1,019,616 | 0.000226581 | 0.006192968 | 183,185,952 | 0.040707989 | Error: Ran too long | 0.00017604 |
10 | Unrealistically long compile time | Unrealistically long compile time | Unrealistically long compile time | 2,988,240,992 | 0.664053554 | Error: Ran too long | 0.00017604 |
Qubits | Variant 1 | Variant 2 | Decoherence Time (ibm_sherbrooke) (Seconds) | ||||
---|---|---|---|---|---|---|---|
Circuit Depth |
Expected Execution Time in Seconds (1 Shot) |
RMSE Error on ibm_sherbrooke (0.1M Shots) | Circuit Depth |
Expected Execution Time in Seconds (1 Shot) |
RMSE Error on ibm_sherbrooke (0.1M Shots) | ||
6 | 259,712 | 0.000057714 | 0.001817507 | 11,478,944 | 0.002550876 | 0.00217605 | 0.00017604 |
9 | 2,000,192 | 0.000444487 | 0.002353428 | 735,210,400 | 0.163380089 | Error: Ran too long | 0.00017604 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaudhary, M.; El-Araby, K.; Nobel, A.; Jha, V.; Kneidel, D.; Islam, I.; Singh, M.; Ogundele, S.; Phillips, B.; Egan, K.; et al. Solving Multidimensional Partial Differential Equations Using Efficient Quantum Circuits. Algorithms 2025, 18, 176. https://doi.org/10.3390/a18030176
Chaudhary M, El-Araby K, Nobel A, Jha V, Kneidel D, Islam I, Singh M, Ogundele S, Phillips B, Egan K, et al. Solving Multidimensional Partial Differential Equations Using Efficient Quantum Circuits. Algorithms. 2025; 18(3):176. https://doi.org/10.3390/a18030176
Chicago/Turabian StyleChaudhary, Manu, Kareem El-Araby, Alvir Nobel, Vinayak Jha, Dylan Kneidel, Ishraq Islam, Manish Singh, Sunday Ogundele, Ben Phillips, Kieran Egan, and et al. 2025. "Solving Multidimensional Partial Differential Equations Using Efficient Quantum Circuits" Algorithms 18, no. 3: 176. https://doi.org/10.3390/a18030176
APA StyleChaudhary, M., El-Araby, K., Nobel, A., Jha, V., Kneidel, D., Islam, I., Singh, M., Ogundele, S., Phillips, B., Egan, K., Thomas, S., Bontrager, D., Kim, S., & El-Araby, E. (2025). Solving Multidimensional Partial Differential Equations Using Efficient Quantum Circuits. Algorithms, 18(3), 176. https://doi.org/10.3390/a18030176