The Diagnostic Classification of the Pathological Image Using Computer Vision
Abstract
:1. Introduction
2. Applications of Deep Learning Approaches for Diagnostic Classification
- Faster screening and triage of patients.
- Reduced workload for physicians and clinicians.
- More efficient use of healthcare resources.
3. How Does Computer Vision Improve the Accuracy of Disease Diagnosis
4. Architectures, Features, and Advantages of CNNs
- F(i,j) is the feature map;
- x is the input image;
- w is the filter;
- i, j, p, q are the indices of the pixels.
- Z(i,j)k(l+1) is the output of the pooling layer;
- R(i,j) represents the receptive field (kernel window) at position (i,j);
- Z(x,y)k(l) is the input feature map.
- y is the output vector;
- x is the input vector;
- b is the bias vector;
- σ is a nonlinear activation function;
- W is the weight matrix.
- Image classification and recognition;
- Object detection;
- Medical image analysis;
- Facial recognition;
- Natural language processing (adapted versions);
- Video analysis.
- AlexNet: As the winner of the 2012 ImageNet Large Scale Visual Recognition Challenge (ILSVRC), AlexNet marked a significant breakthrough in computer vision and deep learning. AlexNet is a pioneering CNN architecture that significantly impacted the field of computer vision. This CNN architecture, developed by Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, achieved a top-5 error rate of 15.3%, outperforming the nearest competitor by 9.8 percentage points. Key features of AlexNet include the following: (i) an eight-layer architecture with five convolutional layers and three fully connected layers. (ii) The use of Rectified Linear Units (ReLU) activation functions for faster convergence. (iii) The implementation of dropout to control overfitting. (iv) The utilization of GPUs for efficient training. AlexNet’s success demonstrated the power of deep learning in handling large-scale visual recognition tasks, paving the way for further advancements in CNN architectures and applications across various fields, including medical imaging, agriculture, and autonomous driving. The output size of a convolutional layer in AlexNet is calculated using the following formula:
- O is the output size;
- W is the input size;
- K is the kernel (filter) size;
- P is the padding;
- S is the stride.
- Input size: 224 × 224;
- Kernel size: 11 × 11;
- Stride: 4;
- Padding: 2.
- Input size: 55 × 55;
- Kernel size: 3 × 3;
- Stride: 2;
- X is the input vector (13 × 13 × 256 = 43,264 neurons);
- W is the weight matrix (43,264 × 4096);
- b is the bias vector (4096);
- Y is the output vector (4096 neurons).
- xi is the input value for class i;
- K is the total number of classes;
- e is the mathematical constant (approximately 2.718).
- VGG-16: This architecture is known for its simplicity and depth, with 16 weight layers. VGG-16 has proven effective in pathological image classification tasks. It achieves high accuracy in cataract detection, with a classification accuracy of 98.24%, sensitivity of 99.77%, and specificity of 97.83% when used as part of a larger architecture. Its deep structure allows for robust feature extraction, making it suitable for complex pathological image analysis. However, VGG-16 has limitations: (i) a large number of parameters, leading to high computational costs, (ii) potential for overfitting on smaller datasets, and (iii) limited ability to capture multi-scale features compared to more modern architectures.
- ResNet: This architecture introduced residual connections to train very deep networks, with some versions exceeding 100 layers. ResNet’s key advantage is its ability to train very deep networks effectively, mitigating the vanishing gradient problem through skip connections [139]. This allows for improved performance in complex image recognition tasks, including pathological image analysis. The advantages facilitate the training of extremely deep networks effective in handling complex image recognition tasks and are computationally efficient compared to some other architectures. On the other hand, limitations include that it may not be as efficient in feature reuse as DenseNet and can require more parameters to achieve similar performance to DenseNet.
- Inception (GoogLeNet): This architecture features inception modules for efficient feature extraction. Inception architectures, like Inception-v3 and Inception-v4, are designed to be computationally efficient while maintaining high accuracy [140]. The advantages are computationally efficient, flexible in handling different scales of features, and performs well even with limited training data. On the other hand, as for limitations, complex architecture can be challenging to modify or interpret and may suffer from overfitting if not properly tuned.
- DenseNet: This architecture features dense connections between layers, allowing for improved information flow and gradient propagation [141]. It has shown effectiveness in various medical imaging tasks, including classification and segmentation [142]. DenseNet excels in feature reuse and parameter efficiency, making it particularly effective for tasks requiring fine-grained feature analysis [140]. The advantage is highly parameter-efficient, achieving high accuracy with fewer parameters, excellent feature reuse across the network, and resilience to vanishing gradient problems. On the other hand, its limitations are higher memory usage due to feature map concatenation and that it can be computationally intensive, especially for very deep versions.
- U-Net: Specifically designed for biomedical image segmentation, U-Net features a contracting path to capture context and a symmetric expanding path for precise localization [142]. U-Net excels in medical image segmentation tasks, particularly in identifying structures in pathological images. When combined with attention mechanisms, such as in the Deep Attention U-Net for Cataract Diagnosis (DAUCD) model, it achieves impressive results in blood vessel segmentation for cataract detection. Advantages of U-Net include efficient use of context information, ability to work with limited training data, and good performance in biomedical image segmentation. On the other hand, limitations may include its struggle with very small or highly imbalanced datasets and can be computationally intensive for large images.
- SegNet: SegNet is a deep convolutional encoder–decoder architecture designed for semantic pixel-wise segmentation. An encoder–decoder architecture for semantic pixel-wise segmentation, which has been applied successfully to medical image analysis tasks [142]. There are some advantages: improved boundary delineation [143], memory efficiency, end-to-end training, efficient upsampling, and constant feature map size. SegNet’s architecture enhances the accuracy of object boundaries in segmented images. The network uses a smaller number of parameters compared to other architectures, making it more memory-efficient during inference. SegNet can be trained end-to-end using stochastic gradient descent, which simplifies the training process. The use of max pooling indices for upsampling in the decoder network reduces the number of parameters and improves efficiency. SegNet maintains a constant number of features per layer, which decreases the computational cost for deeper encoder–decoder pairs. On the other hand, there are some limitations, such as performance trade-offs, limited contextual information, training complexity, dataset dependency, etc. While SegNet is efficient, some other architectures like DeepLab-LargeFOV may achieve higher accuracy at the cost of increased computational resources. The flat architecture of SegNet may capture less contextual information compared to networks with expanding deep encoder structures. Although end-to-end training is possible, SegNet may still require careful tuning of hyperparameters and training strategies to achieve optimal performance. The performance of SegNet can vary depending on the specific dataset and segmentation task, as demonstrated by comparisons at different benchmarks. SegNet’s design prioritizes efficiency and practicality, making it suitable for applications with limited computational resources while still providing competitive segmentation performance.
- EfficientNet: This is an improved version of ResNet and MobileNet, trained on low parameters while yielding excellent results for image classification [144,145]. EfficientNet has shown promise in skin disease classification. An ensemble network, including EfficientNet, along with ResNet50 and MobileNetV3, has been proposed for classifying skin diseases. EfficientNet’s main advantages are improved accuracy and efficiency through compound scaling and better performance with fewer parameters compared to other models. On the other hand, its limitations include that it may require careful tuning of hyperparameters and can be complex to implement and optimize.
- Xception: This architecture is an extension of the Inception architecture that replaces Inception modules with depthwise separable convolutions, showing promise in medical image classification tasks. Xception, a deep learning model for image classification, offers several advantages: efficiency, improved accuracy, generalization, and parameter efficiency. It uses depthwise separable convolutions, reducing computational complexity and parameter count, leading to faster training and inference times. In addition, Xception’s architecture enables better capture of spatial and cross-channel dependencies, resulting in state-of-the-art performance on various image classification benchmarks. Also, the model’s design allows for better performance on unseen data, crucial for real-world applications. Further, Xception significantly reduces the number of parameters compared to traditional CNNs, making it more lightweight. However, Xception also has some limitations: greater memory requirements, more training data, and complexity. The depthwise separable convolutions consume more memory compared to traditional convolutions, which can be challenging in resource-constrained environments. Due to its higher number of parameters, Xception generally requires larger amounts of training data to achieve optimal performance. While more efficient than some earlier models, Xception’s architecture is still complex, which can make it challenging to implement and optimize in certain scenarios [146].
- Custom CNN architectures: Researchers have developed task-specific CNN models for medical imaging. For example, a study proposed two simplified CNN models for Alzheimer’s disease classification using MRI data, achieving high accuracy with a straightforward structure [147]. Custom CNNs have been successfully applied in various pathological tasks. For instance, the Mask Cell of the multi-class deep network (MCNet) achieves high accuracy in blood cell detection and classification, with a mAP@IoU0.50 of 95.70 for the PBC dataset and 96.76 for the Blood Cell count and Detection (BCCD) dataset. The advantages of custom CNNs are that they can be tailored to specific pathological tasks, with flexibility in architecture design and the potential for high performance when optimized. On the other hand, the limitations require significant expertise to design and optimize and may not generalize well to other tasks without modification.
5. The Datasets Referenced in Studies on the Diagnostic Classification of Pathological Images Using Computer Vision, Including Both Publicly Available and Proprietary Datasets
6. A Comprehensive Comparison of CNN Models and State-of-the-Art Methods for Images in Different Modalities for Different Diseases
7. Integration into Real-World Clinical Workflows
8. Interpretability, Regulatory Concerns, and Cost
8.1. Interpretability Is a Significant Challenge in AI-Based Pathological Image Analysis
8.2. AI Algorithms for Pathological Image Analysis Face Stringent Regulatory Requirements
8.3. The Implementation of AI in Pathological Image Analysis Can Be Expensive
9. Challenges and Future Directions
9.1. Advanced Neural Network Architectures
9.2. Multimodal Integration
9.3. Automated Feature Detection
9.4. Self-Supervised Learning
9.5. Explainable AI
- Ensuring model generalizability across different laboratories and staining protocols.
- Addressing potential biases in training data.
- Integrating AI tools into existing clinical workflows.
- Maintaining interpretability of AI-assisted diagnoses.
10. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chatzipanagiotou, O.P.; Loukas, C.; Vailas, M.; Machairas, N.; Kykalos, S.; Charalampopoulos, G.; Filippiadis, D.; Felekouras, E.; Schizas, D. Artificial intelligence in hepatocellular carcinoma diagnosis: A comprehensive review of current literature. J. Gastroenterol. Hepatol. 2024, 39, 1994–2005. [Google Scholar] [CrossRef] [PubMed]
- Priya, C.V.L.; Biju, V.G.; Vinod, B.R.; Ramachandran, S. Deep learning approaches for breast cancer detection in histopathology images: A review. Cancer Biomark. 2024, 40, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Wang, X.; Lin, Y.; Ma, X.; Tan, A.; Chan, R.; Vardhanabhuti, V.; Chu, W.C.; Cheng, K.T.; Chen, H. Deep Learning in Breast Cancer Imaging: A Decade of Progress and Future Directions. IEEE Rev. Biomed. Eng. 2024, in press. [CrossRef] [PubMed]
- Dong, C.; Hayashi, S. Deep learning applications in vascular dementia using neuroimaging. Curr. Opin. Psychiatry 2024, 37, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Deng, C.; Li, D.; Feng, M.; Han, D.; Huang, Q. The value of deep neural networks in the pathological classification of thyroid tumors. Diagn. Pathol. 2023, 18, 95. [Google Scholar] [CrossRef] [PubMed]
- Khosravi, P.; Lysandrou, M.; Eljalby, M.; Li, Q.; Kazemi, E.; Zisimopoulos, P.; Sigaras, A.; Brendel, M.; Barnes, J.; Ricketts, C.; et al. A Deep Learning Approach to Diagnostic Classification of Prostate Cancer Using Pathology-Radiology Fusion. J. Magn. Reson. Imaging 2021, 54, 462–471. [Google Scholar] [CrossRef] [PubMed]
- Hekler, A.; Utikal, J.S.; Enk, A.H.; Solass, W.; Schmitt, M.; Klode, J.; Schadendorf, D.; Sondermann, W.; Franklin, C.; Bestvater, F.; et al. Deep learning outperformed 11 pathologists in the classification of histopathological melanoma images. Eur. J. Cancer 2019, 118, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Kosaraju, S.; Park, J.; Lee, H.; Yang, J.W.; Kang, M. Deep learning-based framework for slide-based histopathological image analysis. Sci. Rep. 2022, 12, 19075. [Google Scholar] [CrossRef] [PubMed]
- Iizuka, O.; Kanavati, F.; Kato, K.; Rambeau, M.; Arihiro, K.; Tsuneki, M. Deep Learning Models for Histopathological Classification of Gastric and Colonic Epithelial Tumours. Sci. Rep. 2020, 10, 1504. [Google Scholar] [CrossRef] [PubMed]
- Shimazaki, T.; Deshpande, A.; Hajra, A.; Thomas, T.; Muta, K.; Yamada, N.; Yasui, Y.; Shoda, T. Deep learning-based image-analysis algorithm for classification and quantification of multiple histopathological lesions in rat liver. J. Toxicol. Pathol. 2022, 35, 135–147. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.E.; Cosa-Linan, A.; Santhanam, N.; Jannesari, M.; Maros, M.E.; Ganslandt, T. Transfer learning for medical image classification: A literature review. BMC Med. Imaging 2022, 22, 69. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Pan, J.; Zhang, X.; Li, Y.; Liu, W.; Lin, R.; Wang, X.; Kang, D.; Li, Z.; Huang, F.; et al. Towards next-generation diagnostic pathology: AI-empowered label-free multiphoton microscopy. Light Sci. Appl. 2024, 13, 254. [Google Scholar] [CrossRef] [PubMed]
- Tsai, M.J.; Tao, Y.H. Deep Learning Technology Applied to Medical Image Tissue Classification. Diagnostics 2022, 12, 2430. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Wu, W.; Zhang, Y.; Lin, S.; Jiang, Y.; Liu, R.; Wang, X. Computational analysis of pathological image enables interpretable prediction for microsatellite instability. arXiv 2020, arXiv:2010.03130. Available online: https://arxiv.org/abs/2010.03130 (accessed on 7 October 2020). [CrossRef]
- Zheng, S.; Cui, X.; Sun, Y.; Li, J.; Li, H.; Zhang, Y.; Chen, P.; Jing, X.; Ye, Z.; Yang, L. Benchmarking PathCLIP for Pathology Image Analysis. arXiv 2024, arXiv:2401.02651. Available online: https://arxiv.org/abs/2401.02651 (accessed on 5 January 2024). [CrossRef] [PubMed]
- Li, J.; Sun, Q.; Yan, R.; Wang, Y.; Fu, Y.; Wei, Y.; Guan, T.; Shi, H.; He, Y.; Han, A. Diagnostic Text-guided Representation Learning in Hierarchical Classification for Pathological Whole Slide Image. arXiv 2024, arXiv:2411.10709. Available online: https://arxiv.org/abs/2411.10709 (accessed on 16 November 2024).
- Muksimova, S.; Umirzakova, S.; Kang, S.; Cho, Y.I. CerviLearnNet: Advancing cervical cancer diagnosis with reinforcement learning-enhanced convolutional networks. Heliyon 2024, 10, e29913. [Google Scholar] [CrossRef] [PubMed]
- Muksimova, S.; Umirzakova, S.; Mardieva, S.; Cho, Y.I. Enhancing Medical Image Denoising with Innovative Teacher-Student Model-Based Approaches for Precision Diagnostics. Sensors 2023, 23, 9502. [Google Scholar] [CrossRef] [PubMed]
- Jo, T.; Nho, K.; Bice, P.; Saykin, A.J. Alzheimer’s Disease Neuroimaging Initiative. Deep learning-based identification of genetic variants: Application to Alzheimer’s disease classification. Brief. Bioinform. 2022, 23, bbac022. [Google Scholar] [CrossRef] [PubMed]
- Alsubai, S.; Khan, H.U.; Alqahtani, A.; Sha, M.; Abbas, S.; Mohammad, U.G. Ensemble deep learning for brain tumor detection. Front. Comput. Neurosci. 2022, 16, 1005617. [Google Scholar] [CrossRef] [PubMed]
- Ragab, M.; Albukhari, A.; Alyami, J.; Mansour, R.F. Ensemble Deep-Learning-Enabled Clinical Decision Support System for Breast Cancer Diagnosis and Classification on Ultrasound Images. Biology 2022, 11, 439. [Google Scholar] [CrossRef] [PubMed]
- Tahmid, M.T.; Kader, M.E.; Mahmud, T.; Fattah, S.A. MD-CardioNet: A Multi-Dimensional Deep Neural Network for Cardiovascular Disease Diagnosis from Electrocardiogram. IEEE J. Biomed. Health Inform. 2023, 28, 2005–2013. [Google Scholar] [CrossRef] [PubMed]
- García-Jaramillo, M.; Luque, C.; León-Vargas, F. Machine Learning and Deep Learning Techniques Applied to Diabetes Research: A Bibliometric Analysis. J. Diabetes Sci. Technol. 2024, 18, 287–301. [Google Scholar] [CrossRef] [PubMed]
- Lakshmipriya, B.; Pottakkat, B.; Ramkumar, G. Deep learning techniques in liver tumour diagnosis using CT and MR imaging—A systematic review. Artif. Intell. Med. 2023, 141, 102557. [Google Scholar] [CrossRef] [PubMed]
- Anai, S.; Hisasue, J.; Takaki, Y.; Hara, N. Deep Learning Models to Predict Fatal Pneumonia Using Chest X-Ray Images. Can. Respir. J. 2022, 2022, 8026580. [Google Scholar] [CrossRef] [PubMed]
- Jaradat, A.S.; Al Mamlook, R.E.; Almakayeel, N.; Alharbe, N.; Almuflih, A.S.; Nasayreh, A.; Gharaibeh, H.; Gharaibeh, M.; Gharaibeh, A.; Bzizi, H. Automated Monkeypox Skin Lesion Detection Using Deep Learning and Transfer Learning Techniques. Int. J. Environ. Res. Public Health 2023, 20, 4422. [Google Scholar] [CrossRef] [PubMed]
- Ahsan, M.M.; Luna, S.A.; Siddique, Z. Machine-Learning-Based Disease Diagnosis: A Comprehensive Review. Healthcare 2022, 10, 541. [Google Scholar] [CrossRef] [PubMed]
- Albahli, S.; Ahmad Hassan Yar, G.N. AI-driven deep convolutional neural networks for chest X-ray pathology identification. J. Xray Sci. Technol. 2022, 30, 365–376. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.; Wang, M.; Wen, Y.; Du, F.; Jiang, L.; Geng, X.; Tang, L.; Yan, H. Predicting acute pancreatitis severity with enhanced computed tomography scans using convolutional neural networks. Sci. Rep. 2023, 13, 17514. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, M.; Piacenti-Silva, M.; da Rocha, F.C.G.; Santos, J.M.; Cardoso, J.D.S.; Lisboa-Filho, P.N. Lesion Volume Quantification Using Two Convolutional Neural Networks in MRIs of Multiple Sclerosis Patients. Diagnostics 2022, 12, 230. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.; Lodhi, B.; Kang, J. An automatic nuclei segmentation method based on deep convolutional neural networks for histopathology images. BMC Biomed. Eng. 2019, 1, 24. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Ma, F.; Gao, J. Integrating Multimodal Electronic Health Records for Diagnosis Prediction. AMIA Annu. Symp. Proc. 2022, 2021, 726–735. [Google Scholar] [PubMed]
- Martins, T.D.; Annichino-Bizzacchi, J.M.; Romano, A.V.C.; Maciel Filho, R. Artificial neural networks for prediction of recurrent venous thromboembolism. Int. J. Med. Inform. 2020, 141, 104221. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.; Qiu, A. Ensemble Vision Transformer for Dementia Diagnosis. IEEE J. Biomed. Health Inform. 2024, 28, 5551–5561. [Google Scholar] [CrossRef] [PubMed]
- Al Shehri, W. Alzheimer’s disease diagnosis and classification using deep learning techniques. PeerJ Comput. Sci. 2022, 8, e1177. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.S.; Han, J.W.; Bae, J.B.; Moon, D.G.; Shin, J.; Kong, J.E.; Lee, H.; Yang, H.W.; Lim, E.; Kim, J.Y.; et al. Deep learning-based diagnosis of Alzheimer’s disease using brain magnetic resonance images: An empirical study. Sci. Rep. 2022, 12, 18007. [Google Scholar] [CrossRef] [PubMed]
- Jo, T.; Nho, K.; Saykin, A.J. Deep Learning in Alzheimer’s Disease: Diagnostic Classification and Prognostic Prediction Using Neuroimaging Data. Front. Aging Neurosci. 2019, 11, 220. [Google Scholar] [CrossRef] [PubMed]
- Alsubaie, M.G.; Luo, S.; Shaukat, K. Alzheimer’s Disease Detection Using Deep Learning on Neuroimaging: A Systematic Review. Mach. Learn. Knowl. Extr. 2024, 6, 464–505. [Google Scholar] [CrossRef]
- Liu, S.; Masurkar, A.V.; Rusinek, H.; Chen, J.; Zhang, B.; Zhu, W.; Fernandez-Granda, C.; Razavian, N. Generalizable deep learning model for early Alzheimer’s disease detection from structural MRIs. Sci Rep. 2022, 12, 17106. [Google Scholar] [CrossRef] [PubMed]
- Zhen, S.H.; Cheng, M.; Tao, Y.B.; Wang, Y.F.; Juengpanich, S.; Jiang, Z.Y.; Jiang, Y.K.; Yan, Y.Y.; Lu, W.; Lue, J.M.; et al. Deep Learning for Accurate Diagnosis of Liver Tumor Based on Magnetic Resonance Imaging and Clinical Data. Front. Oncol. 2020, 10, 680. [Google Scholar] [CrossRef] [PubMed]
- Sridhar, K.C.K.; Lai, W.C.; Kavin, B.P. Detection of Liver Tumour Using Deep Learning Based Segmentation with Coot Extreme Learning Model. Biomedicines 2023, 11, 800. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Zhang, R.; Shi, Y.; Sun, J.; Xu, X. Automated machine learning for predicting liver metastasis in patients with gastrointestinal stromal tumor: A SEER-based analysis. Sci. Rep. 2024, 14, 12415. [Google Scholar] [CrossRef] [PubMed]
- Othman, E.; Mahmoud, M.; Dhahri, H.; Abdulkader, H.; Mahmood, A.; Ibrahim, M. Automatic Detection of Liver Cancer Using Hybrid Pre-Trained Models. Sensors 2022, 22, 5429. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.Q.; Ren, J.Y.; Xu, X.L.; Xiong, L.Y.; Peng, Y.X.; Pan, X.F.; Dietrich, C.F.; Cui, X.W. Ultrasound-based artificial intelligence in gastroenterology and hepatology. World J. Gastroenterol. 2022, 28, 5530–5546. [Google Scholar] [CrossRef] [PubMed]
- Wong, P.K.; Chan, I.N.; Yan, H.M.; Gao, S.; Wong, C.H.; Yan, T.; Yao, L.; Hu, Y.; Wang, Z.R.; Yu, H.H. Deep learning based radiomics for gastrointestinal cancer diagnosis and treatment: A minireview. World J. Gastroenterol. 2022, 28, 6363–6379. [Google Scholar] [CrossRef] [PubMed]
- Pinto-Coelho, L. How Artificial Intelligence Is Shaping Medical Imaging Technology: A Survey of Innovations and Applications. Bioengineering 2023, 10, 1435. [Google Scholar] [CrossRef] [PubMed]
- Thakur, G.K.; Thakur, A.; Kulkarni, S.; Khan, N.; Khan, S. Deep Learning Approaches for Medical Image Analysis and Diagnosis. Cureus 2024, 16, e59507. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Jiang, Y.; Zhang, Y.; Zhu, H. Medical image analysis using deep learning algorithms. Front. Public Health. 2023, 11, 1273253. [Google Scholar] [CrossRef]
- Li, Y.; El Habib Daho, M.; Conze, P.H.; Zeghlache, R.; Le Boité, H.; Tadayoni, R.; Cochener, B.; Lamard, M.; Quellec, G. A review of deep learning-based information fusion techniques for multimodal medical image classification. Comput. Biol. Med. 2024, 177, 108635. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.T.; Nguyen, H.Q.; Pham, H.H.; Lam, K.; Le, L.T.; Dao, M.; Vu, V. VinDr-Mammo: A large-scale benchmark dataset for computer-aided diagnosis in full-field digital mammography. Sci. Data 2023, 10, 277. [Google Scholar] [CrossRef] [PubMed]
- Cellina, M.; Cacioppa, L.M.; Cè, M.; Chiarpenello, V.; Costa, M.; Vincenzo, Z.; Pais, D.; Bausano, M.V.; Rossini, N.; Bruno, A.; et al. Artificial Intelligence in Lung Cancer Screening: The Future Is Now. Cancers 2023, 15, 4344. [Google Scholar] [CrossRef] [PubMed]
- Zhou, N.; Chen, H.; Liu, B.; Xu, C.Y. Enhanced river suspended sediment concentration identification via multimodal video image, optical flow, and water temperature data fusion. J. Environ. Manag. 2024, 367, 122048. [Google Scholar] [CrossRef] [PubMed]
- Carriero, A.; Groenhoff, L.; Vologina, E.; Basile, P.; Albera, M. Deep Learning in Breast Cancer Imaging: State of the Art and Recent Advancements in Early 2024. Diagnostics 2024, 14, 848. [Google Scholar] [CrossRef] [PubMed]
- Perosa, V.; Scherlek, A.A.; Kozberg, M.G.; Smith, L.; Westerling-Bui, T.; Auger, C.A.; Vasylechko, S.; Greenberg, S.M.; van Veluw, S.J. Deep learning assisted quantitative assessment of histopathological markers of Alzheimer’s disease and cerebral amyloid angiopathy. Acta Neuropathol. Commun. 2021, 9, 141. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.J.; Tian, H.L.; Lu, B. A Deep Neural Network-Based Model for Quantitative Evaluation of the Effects of Swimming Training. Comput. Intell. Neurosci. 2022, 2022, 5508365. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Li, I.; Liang, Y.; Sun, D.; Yang, Y.; Yang, H. Research on Deep Learning Model of Feature Extraction Based on Convolutional Neural Network. arXiv 2024, arXiv:2406.08837v1. Available online: https://doi.org/10.48550/arXiv.2406.08837 (accessed on 13 June 2024). [CrossRef]
- Tripathi, N.; Bhardwaj, N.; Kumar, S.; Jain, S.K. A machine learning-based KNIME workflow to predict VEGFR-2 inhibitors. Chem. Biol. Drug Des. 2023, 102, 38–50. [Google Scholar] [CrossRef] [PubMed]
- Bui, Q.-T.; Chou, T.-Y.; Hoang, T.-V.; Fang, Y.-M.; Mu, C.-Y.; Huang, P.-H.; Pham, V.-D.; Nguyen, Q.-H.; Anh, D.T.N.; Pham, V.-M.; et al. Gradient Boosting Machine and Object-Based CNN for Land Cover Classification. Remote Sens. 2021, 13, 2709. [Google Scholar] [CrossRef]
- Matsumoto, S.; Ishida, S.; Araki, M.; Kato, T.; Terayama, K.; Okuno, Y. Extraction of protein dynamics information from cryo-EM maps using deep learning. Nat. Mach. Intell. 2021, 3, 153–160. [Google Scholar] [CrossRef]
- Narula, J.; Stuckey, T.D.; Nakazawa, G.; Ahmadi, A.; Matsumura, M.; Petersen, K.; Mirza, S.; Ng, N.; Mullen, S.; Schaap, M.; et al. Prospective deep learning-based quantitative assessment of coronary plaque by computed tomography angiography compared with intravascular ultrasound: The REVEALPLAQUE study. Eur. Heart J. Cardiovasc. Imaging 2024, 25, 1287–1295. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.N.; Lin, A.; Dey, D.; Berman, D.S.; Han, D. Application of Quantitative Assessment of Coronary Atherosclerosis by Coronary Computed Tomographic Angiography. Korean J. Radiol. 2024, 25, 518–539. [Google Scholar] [CrossRef] [PubMed]
- Griffin, W.F.; Choi, A.D.; Riess, J.S.; Marques, H.; Chang, H.J.; Choi, J.H.; Doh, J.H.; Her, A.Y.; Koo, B.K.; Nam, C.W.; et al. AI Evaluation of Stenosis on Coronary CTA, Comparison with Quantitative Coronary Angiography and Fractional Flow Reserve: A CREDENCE Trial Substudy. JACC Cardiovasc. Imaging 2023, 16, 193–205. [Google Scholar] [CrossRef] [PubMed]
- Covas, P.; De Guzman, E.; Barrows, I.; Bradley, A.J.; Choi, B.G.; Krepp, J.M.; Lewis, J.F.; Katz, R.; Tracy, C.M.; Zeman, R.K.; et al. Artificial Intelligence Advancements in the Cardiovascular Imaging of Coronary Atherosclerosis. Front. Cardiovasc. Med. 2022, 9, 839400. [Google Scholar] [CrossRef] [PubMed]
- Voros, S.; Rinehart, S.; Qian, Z.; Joshi, P.; Vazquez, G.; Fischer, C.; Belur, P.; Hulten, E.; Villines, T.C. Coronary atherosclerosis imaging by coronary CT angiography: Current status, correlation with intravascular interrogation and meta-analysis. JACC Cardiovasc. Imaging 2011, 4, 537–548. [Google Scholar] [CrossRef] [PubMed]
- Arjmandi, N.; Mosleh-Shirazi, M.A.; Mohebbi, S.; Nasseri, S.; Mehdizadeh, A.; Pishevar, Z.; Hosseini, S.; Tehranizadeh, A.A.; Momennezhad, M. Evaluating the dosimetric impact of deep-learning-based auto-segmentation in prostate cancer radiotherapy: Insights into real-world clinical implementation and inter-observer variability. J. Appl. Clin. Med. Phys. 2024, 1, e14569. [Google Scholar] [CrossRef] [PubMed]
- Bhandari, A. Revolutionizing Radiology with Artificial Intelligence. Cureus 2024, 16, e72646. [Google Scholar] [CrossRef] [PubMed]
- Gala, D.; Behl, H.; Shah, M.; Makaryus, A.N. The Role of Artificial Intelligence in Improving Patient Outcomes and Future of Healthcare Delivery in Cardiology: A Narrative Review of the Literature. Healthcare 2024, 12, 481. [Google Scholar] [CrossRef] [PubMed]
- Bennani, S.; Regnard, N.E.; Ventre, J.; Lassalle, L.; Nguyen, T.; Ducarouge, A.; Dargent, L.; Guillo, E.; Gouhier, E.; Zaimi, S.H.; et al. Using AI to Improve Radiologist Performance in Detection of Abnormalities on Chest Radiographs. Radiology 2023, 309, e230860. [Google Scholar] [CrossRef] [PubMed]
- Wiggins, W.F.; Magudia, K.; Schmidt, T.M.S.; O’Connor, S.D.; Carr, C.D.; Kohli, M.D.; Andriole, K.P. Imaging AI in Practice: A Demonstration of Future Workflow Using Integration Standards. Radiol. Artif. Intell. 2021, 3, e210152. [Google Scholar] [CrossRef] [PubMed]
- Baltruschat, I.; Steinmeister, L.; Nickisch, H.; Saalbach, A.; Grass, M.; Adam, G.; Knopp, T.; Ittrich, H. Smart chest X-ray worklist prioritization using artificial intelligence: A clinical workflow simulation. Eur. Radiol. 2021, 31, 3837–3845. [Google Scholar] [CrossRef] [PubMed]
- Hosny, A.; Parmar, C.; Quackenbush, J.; Schwartz, L.H.; Aerts, H.J.W.L. Artificial intelligence in radiology. Nat. Rev. Cancer 2018, 18, 500–510. [Google Scholar] [CrossRef] [PubMed]
- Salih, S.; Elliyanti, A.; Alkatheeri, A.; AlYafei, F.; Almarri, B.; Khan, H. The Role of Molecular Imaging in Personalized Medicine. J. Pers. Med. 2023, 13, 369. [Google Scholar] [CrossRef] [PubMed]
- Massoud, T.F.; Gambhir, S.S. Integrating noninvasive molecular imaging into molecular medicine: An evolving paradigm. Trends Mol. Med. 2007, 13, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Pianykh, O.S.; Langs, G.; Dewey, M.; Enzmann, D.R.; Herold, C.J.; Schoenberg, S.O.; Brink, J.A. Continuous Learning AI in Radiology: Implementation Principles and Early Applications. Radiology 2020, 297, 6–14. [Google Scholar] [CrossRef] [PubMed]
- Najjar, R. Redefining Radiology: A Review of Artificial Intelligence Integration in Medical Imaging. Diagnostics 2023, 13, 2760. [Google Scholar] [CrossRef] [PubMed]
- Izadi, S.; Forouzanfar, M. Error Correction and Adaptation in Conversational AI: A Review of Techniques and Applications in Chatbots. AI 2024, 5, 803–841. [Google Scholar] [CrossRef]
- Popa, S.L.; Ismaiel, A.; Brata, V.D.; Turtoi, D.C.; Barsan, M.; Czako, Z.; Pop, C.; Muresan, L.; Stanculete, M.F.; Dumitrascu, D.I. Artificial Intelligence and medical specialties: Support or substitution? Med. Pharm. Rep. 2024, 97, 409–418. [Google Scholar] [CrossRef] [PubMed]
- Berbís, M.A.; Paulano Godino, F.; Royuela Del Val, J.; Alcalá Mata, L.; Luna, A. Clinical impact of artificial intelligence-based solutions on imaging of the pancreas and liver. World J. Gastroenterol. 2023, 29, 1427–1445. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Ren, Y.; Wang, J.; Yang, X.; Lu, L. The Clinical Diagnostic Value of F-FDG PET/CT Combined with MRI in Pancreatic Cancer. Contrast Media Mol. Imaging 2022, 2022, 1479416. [Google Scholar] [CrossRef] [PubMed]
- Cai, L.; Pfob, A. Artificial intelligence in abdominal and pelvic ultrasound imaging: Current applications. Abdom. Radiol. 2024, in press. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.M.; Park, J.Y.; Kim, Y.J.; Kim, K.G. Deep-learning-based pelvic automatic segmentation in pelvic fractures. Sci. Rep. 2024, 14, 12258. [Google Scholar] [CrossRef] [PubMed]
- Mervak, B.M.; Fried, J.G.; Wasnik, A.P. A Review of the Clinical Applications of Artificial Intelligence in Abdominal Imaging. Diagnostics 2023, 13, 2889. [Google Scholar] [CrossRef] [PubMed]
- Nowak, E.; Białecki, M.; Białecka, A.; Kazimierczak, N.; Kloska, A. Assessing the diagnostic accuracy of artificial intelligence in post-endovascular aneurysm repair endoleak detection using dual-energy computed tomography angiography. Pol. J. Radiol. 2024, 89, e420–e427. [Google Scholar] [CrossRef] [PubMed]
- Fowler, G.E.; Blencowe, N.S.; Hardacre, C.; Callaway, M.P.; Smart, N.J.; Macefield, R. Artificial intelligence as a diagnostic aid in cross-sectional radiological imaging of surgical pathology in the abdominopelvic cavity: A systematic review. BMJ Open 2023, 13, e064739. [Google Scholar] [CrossRef] [PubMed]
- Bajaj, T.; Koyner, J.L. Cautious Optimism: Artificial Intelligence and Acute Kidney Injury. Clin. J. Am. Soc. Nephrol. 2023, 18, 668–670. [Google Scholar] [CrossRef] [PubMed]
- Loftus, T.J.; Shickel, B.; Ozrazgat-Baslanti, T.; Ren, Y.; Glicksberg, B.S.; Cao, J.; Singh, K.; Chan, L.; Nadkarni, G.N.; Bihorac, A. Artificial intelligence-enabled decision support in nephrology. Nat. Rev. Nephrol. 2022, 18, 452–465. [Google Scholar] [CrossRef] [PubMed]
- Raina, R.; Nada, A.; Shah, R.; Aly, H.; Kadatane, S.; Abitbol, C.; Aggarwal, M.; Koyner, J.; Neyra, J.; Sethi, S.K. Artificial intelligence in early detection and prediction of pediatric/neonatal acute kidney injury: Current status and future directions. Pediatr. Nephrol. 2024, 39, 2309–2324. [Google Scholar] [CrossRef] [PubMed]
- Bi, W.L.; Hosny, A.; Schabath, M.B.; Giger, M.L.; Birkbak, N.J.; Mehrtash, A.; Allison, T.; Arnaout, O.; Abbosh, C.; Dunn, I.F.; et al. Artificial intelligence in cancer imaging: Clinical challenges and applications. CA Cancer J. Clin. 2019, 69, 127–157. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, R.; Sounderajah, V.; Martin, G.; Ting, D.S.W.; Karthikesalingam, A.; King, D.; Ashrafian, H.; Darzi, A. Diagnostic accuracy of deep learning in medical imaging: A systematic review and meta-analysis. npj Digit. Med. 2021, 4, 65. [Google Scholar] [CrossRef] [PubMed]
- Puri, P.; Comfere, N.; Drage, L.A.; Shamim, H.; Bezalel, S.A.; Pittelkow, M.R.; Davis, M.D.P.; Wang, M.; Mangold, A.R.; Tollefson, M.M.; et al. Deep learning for dermatologists: Part II. Current applications. J. Am. Acad. Dermatol. 2022, 87, 1352–1360. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Chen, X.; Zhu, M.; Liu, Y.; Wang, Y. Exploring the application and future outlook of Artificial intelligence in pancreatic cancer. Front. Oncol. 2024, 14, 1345810. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Hu, Z.; Wang, S.; Zhang, Y. Deep Learning for Medical Image-Based Cancer Diagnosis. Cancers 2023, 15, 3608. [Google Scholar] [CrossRef] [PubMed]
- Aamir, A.; Iqbal, A.; Jawed, F.; Ashfaque, F.; Hafsa, H.; Anas, Z.; Oduoye, M.O.; Basit, A.; Ahmed, S.; Abdul Rauf, S.; et al. Exploring the current and prospective role of artificial intelligence in disease diagnosis. Ann. Med. Surg. 2024, 86, 943–949. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.; Safo, S.E. A deep learning pipeline for cross-sectional and longitudinal multiview data integration. arXiv 2023, arXiv:2312.01238. Available online: https://arxiv.org/abs/2312.01238 (accessed on 2 December 2023).
- Huang, S.C.; Pareek, A.; Seyyedi, S.; Banerjee, I.; Lungren, M.P. Fusion of medical imaging and electronic health records using deep learning: A systematic review and implementation guidelines. npj Digit. Med. 2020, 3, 136. [Google Scholar] [CrossRef] [PubMed]
- Rajkomar, A.; Oren, E.; Chen, K.; Dai, A.M.; Hajaj, N.; Hardt, M.; Liu, P.J.; Liu, X.; Marcus, J.; Sun, M.; et al. Scalable and accurate deep learning with electronic health records. npj Digit. Med. 2018, 1, 18. [Google Scholar] [CrossRef] [PubMed]
- Kannry, J.L.; Williams, M.S. Integration of genomics into the electronic health record: Mapping terra incognita. Genet. Med. 2013, 15, 757–760. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Bhadani, R.; Sun, Z.; Head, L. MSMA: Multi-agent Trajectory Prediction in Connected and Autonomous Vehicle Environment with Multi-source Data Integration. arXiv 2024, arXiv:2407.21310. Available online: https://arxiv.org/abs/2407.21310 (accessed on 31 July 2024).
- Saeed, M.K.; Al Mazroa, A.; Alghamdi, B.M.; Alallah, F.S.; Alshareef, A.; Mahmud, A. Predictive analytics of complex healthcare systems using deep learning based disease diagnosis model. Sci. Rep. 2024, 14, 27497. [Google Scholar] [CrossRef] [PubMed]
- Maleki Varnosfaderani, S.; Forouzanfar, M. The Role of AI in Hospitals and Clinics: Transforming Healthcare in the 21st Century. Bioengineering 2024, 11, 337. [Google Scholar] [CrossRef] [PubMed]
- Capurro, N.; Pastore, V.P.; Touijer, L.; Odone, F.; Cozzani, E.; Gasparini, G.; Parodi, A. A deep learning approach to direct immunofluorescence pattern recognition in autoimmune bullous diseases. Br. J. Dermatol. 2024, 191, 261–266. [Google Scholar] [CrossRef] [PubMed]
- Dentamaro, V.; Impedovo, D.; Musti, L.; Pirlo, G.; Taurisano, P. Enhancing early Parkinson’s disease detection through multimodal deep learning and explainable AI: Insights from the PPMI database. Sci. Rep. 2024, 14, 20941. [Google Scholar] [CrossRef] [PubMed]
- Swinckels, L.; Bennis, F.C.; Ziesemer, K.A.; Scheerman, J.F.M.; Bijwaard, H.; de Keijzer, A.; Bruers, J.J. The Use of Deep Learning and Machine Learning on Longitudinal Electronic Health Records for the Early Detection and Prevention of Diseases: Scoping Review. J. Med. Internet Res. 2024, 2, e48320. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y.; Li, J.; Xu, X.; Luo, P.; Liu, P.; Wang, J.; Mu, J. Deep learning-driven ultrasound-assisted diagnosis: Optimizing GallScopeNet for precise identification of biliary atresia. Front. Med. 2024, 1, 1445069. [Google Scholar] [CrossRef] [PubMed]
- Sendak, M.P.; Ratliff, W.; Sarro, D.; Alderton, E.; Futoma, J.; Gao, M.; Nichols, M.; Revoir, M.; Yashar, F.; Miller, C.; et al. Real-World Integration of a Sepsis Deep Learning Technology Into Routine Clinical Care: Implementation Study. JMIR Med. Inform. 2020, 8, e15182. [Google Scholar] [CrossRef] [PubMed]
- Reddy, S.; Shaheed, A.; Seo, Y.; Patel, R. Development of an Artificial Intelligence Model for the Classification of Gastric Carcinoma Stages Using Pathology Slides. Cureus 2024, 16, e56740. [Google Scholar] [CrossRef] [PubMed]
- Tolkach, Y.; Wolgast, L.M.; Damanakis, A.; Pryalukhin, A.; Schallenberg, S.; Hulla, W.; Eich, M.L.; Schroeder, W.; Mukhopadhyay, A.; Fuchs, M.; et al. Artificial intelligence for tumour tissue detection and histological regression grading in oesophageal adenocarcinomas: A retrospective algorithm development and validation study. Lancet. Digit. Health 2023, 5, e265–e275. [Google Scholar] [CrossRef] [PubMed]
- Asadi-Aghbolaghi, M.; Darbandsari, A.; Zhang, A.; Contreras-Sanz, A.; Boschman, J.; Ahmadvand, P.; Köbel, M.; Farnell, D.; Huntsman, D.G.; Churg, A.; et al. Learning generalizable AI models for multi-center histopathology image classification. npj Precis. Oncol. 2024, 8, 151. [Google Scholar] [CrossRef] [PubMed]
- Acs, B.; Rantalainen, M.; Hartman, J. Artificial intelligence as the next step towards precision pathology. J. Intern. Med. 2020, 88, 62–81. [Google Scholar] [CrossRef] [PubMed]
- Fell, C.; Mohammadi, M.; Morrison, D.; Arandjelović, O.; Syed, S.; Konanahalli, P.; Bell, S.; Bryson, G.; Harrison, D.J.; Harris-Birtill, D. Detection of malignancy in whole slide images of endometrial cancer biopsies using artificial intelligence. PLoS ONE 2023, 18, e0282577. [Google Scholar] [CrossRef] [PubMed]
- Broggi, G.; Maniaci, A.; Lentini, M.; Palicelli, A.; Zanelli, M.; Zizzo, M.; Koufopoulos, N.; Salzano, S.; Mazzucchelli, M.; Caltabiano, R. Artificial Intelligence in Head and Neck Cancer Diagnosis: A Comprehensive Review with Emphasis on Radiomics, Histopathological, and Molecular Applications. Cancers 2024, 16, 3623. [Google Scholar] [CrossRef] [PubMed]
- Ali, O.; Ali, H.; Ali, S.A.; Shahzad, A. Implementation of a Modified U-Net for Medical Image Segmentation on Edge Devices. arXiv 2022. Available online: https://arxiv.org/abs/2206.02358 (accessed on 31 July 2024).
- Khalighi, S.; Reddy, K.; Midya, A.; Pandav, K.B.; Madabhushi, A.; Abedalthagafi, M. Artificial intelligence in neuro-oncology: Advances and challenges in brain tumor diagnosis, prognosis, and precision treatment. npj Precis. Oncol. 2024, 8, 80. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Niu, J.; Yu, Y.; Xia, S.; Sun, S. AI predictive modeling of survival outcomes for renal cancer patients undergoing targeted therapy. Sci. Rep. 2024, 14, 26156. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wu, J.; Zhao, Z.; Zhang, Q.; Shao, J.; Wang, C.; Qiu, Z.; Li, W. Artificial intelligence-assisted decision making for prognosis and drug efficacy prediction in lung cancer patients: A narrative review. J. Thorac. Dis. 2021, 13, 7021–7033. [Google Scholar] [CrossRef] [PubMed]
- Cowley, H.P.; Natter, M.; Gray-Roncal, K.; Rhodes, R.E.; Johnson, E.C.; Drenkow, N.; Shead, T.M.; Chance, F.S.; Wester, B.; Gray-Roncal, W. A framework for rigorous evaluation of human performance in human and machine learning comparison studies. Sci. Rep. 2022, 12, 5444. [Google Scholar] [CrossRef] [PubMed]
- Dayan, B. Lung Disease Detection with Vision Transformers: A Comparative Study of Machine Learning Methods. arXiv 2024, arXiv:2411.11376. Available online: https://doi.org/10.48550/arXiv.2411.11376 (accessed on 18 November 2024).
- Dai, L.; Wu, L.; Li, H.; Cai, C.; Wu, Q.; Kong, H.; Liu, R.; Wang, X.; Hou, X.; Liu, Y.; et al. A deep learning system for detecting diabetic retinopathy across the disease spectrum. Nat. Commun. 2021, 12, 3242. [Google Scholar] [CrossRef] [PubMed]
- Ai, Z.; Huang, X.; Fan, Y.; Feng, J.; Zeng, F.; Lu, Y. DR-IIXRN: Detection Algorithm of Diabetic Retinopathy Based on Deep Ensemble Learning and Attention Mechanism. Front Neuroinform. 2021, 15, 778552. [Google Scholar] [CrossRef] [PubMed]
- Mursch-Edlmayr, A.S.; Ng, W.S.; Diniz-Filho, A.; Sousa, D.C.; Arnold, L.; Schlenker, M.B.; Duenas-Angeles, K.; Keane, P.A.; Crowston, J.G.; Jayaram, H. Artificial Intelligence Algorithms to Diagnose Glaucoma and Detect Glaucoma Progression: Translation to Clinical Practice. Transl. Vis. Sci. Technol. 2020, 9, 55. [Google Scholar] [CrossRef] [PubMed]
- Zeppieri, M.; Gardini, L.; Culiersi, C.; Fontana, L.; Musa, M.; D’Esposito, F.; Surico, P.L.; Gagliano, C.; Sorrentino, F.S. Novel Approaches for the Early Detection of Glaucoma Using Artificial Intelligence. Life 2024, 14, 1386. [Google Scholar] [CrossRef] [PubMed]
- Hussain, S.; Chua, J.; Wong, D.; Lo, J.; Kadziauskiene, A.; Asoklis, R.; Barbastathis, G.; Schmetterer, L.; Yong, L. Predicting glaucoma progression using deep learning framework guided by generative algorithm. Sci. Rep. 2023, 13, 19960. [Google Scholar] [CrossRef] [PubMed]
- Khanal, B.; Poudel, P.; Chapagai, A.; Regmi, B.; Pokhrel, S.; Khanal, S.E. Paddy Disease Detection and Classification Using Computer Vision Techniques: A Mobile Application to Detect Paddy Disease. arXiv 2024, arXiv:2412.05996. Available online: https://arxiv.org/abs/2412.05996 (accessed on 8 December 2024).
- Mustafa, Z.; Nsour, H. Using Computer Vision Techniques to Automatically Detect Abnormalities in Chest X-rays. Diagnostics 2023, 13, 2979. [Google Scholar] [CrossRef] [PubMed]
- Natarajan, S.; Chakrabarti, P.; Margala, M. Robust diagnosis and meta visualizations of plant diseases through deep neural architecture with explainable AI. Sci. Rep. 2024, 14, 13695. [Google Scholar] [CrossRef] [PubMed]
- Kundu, R.; Das, R.; Geem, Z.W.; Han, G.T.; Sarkar, R. Pneumonia detection in chest X-ray images using an ensemble of deep learning models. PLoS ONE 2021, 16, e0256630. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Kumar, M.; Kumar, A.; Verma, B.K.; Shitharth, S. Pneumonia detection with QCSA network on chest X-ray. Sci. Rep. 2023, 13, 9025. [Google Scholar] [CrossRef] [PubMed]
- Reshan, M.S.A.; Gill, K.S.; Anand, V.; Gupta, S.; Alshahrani, H.; Sulaiman, A.; Shaikh, A. Detection of Pneumonia from Chest X-ray Images Utilizing MobileNet Model. Healthcare 2023, 11, 1561. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Kumar, M.; Kumar, A.; Verma, B.K.; Abhishek, K.; Selvarajan, S. Efficient pneumonia detection using Vision Transformers on chest X-rays. Sci. Rep. 2024, 14, 2487. [Google Scholar] [CrossRef] [PubMed]
- Salehi, M.; Mohammadi, R.; Ghaffari, H.; Sadighi, N.; Reiazi, R. Automated detection of pneumonia cases using deep transfer learning with paediatric chest X-ray images. Br. J. Radiol. 2021, 94, 20201263. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Wu, J.; Wang, N.; Zhang, X.; Bai, Y.; Guo, J.; Zhang, L.; Liu, S.; Tao, K. The value of artificial intelligence in the diagnosis of lung cancer: A systematic review and meta-analysis. PLoS ONE 2023, 18, e0273445. [Google Scholar] [CrossRef] [PubMed]
- Nakao, T.; Hanaoka, S.; Nomura, Y.; Sato, I.; Nemoto, M.; Miki, S.; Maeda, E.; Yoshikawa, T.; Hayashi, N.; Abe, O. Deep neural network-based computer-assisted detection of cerebral aneurysms in MR angiography. J. Magn. Reson. Imaging 2018, 47, 948–953. [Google Scholar] [CrossRef] [PubMed]
- Shimada, Y.; Tanimoto, T.; Nishimori, M.; Choppin, A.; Meir, A.; Ozaki, A.; Higuchi, A.; Kosaka, M.; Shimahara, Y.; Kitamura, N. Incidental cerebral aneurysms detected by a computer-assisted detection system based on artificial intelligence: A case series. Medicine 2020, 99, e21518. [Google Scholar] [CrossRef] [PubMed]
- Kuwabara, M.; Ikawa, F.; Sakamoto, S.; Okazaki, T.; Ishii, D.; Hosogai, M.; Maeda, Y.; Chiku, M.; Kitamura, N.; Choppin, A.; et al. Effectiveness of tuning an artificial intelligence algorithm for cerebral aneurysm diagnosis: A study of 10,000 consecutive cases. Sci. Rep. 2023, 13, 16202. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Li, X.; Jie, Y.; Tan, H. Simultaneous Tri-Modal Medical Image Fusion and Super-Resolution using Conditional Diffusion Model. arXiv 2024, arXiv:2404.17357. Available online: https://arxiv.org/abs/2404.17357 (accessed on 15 October 2024).
- Richens, J.G.; Lee, C.M.; Johri, S. Improving the accuracy of medical diagnosis with causal machine learning. Nat. Commun. 2020, 11, 3923. [Google Scholar] [CrossRef] [PubMed]
- Olveres, J.; González, G.; Torres, F.; Moreno-Tagle, J.C.; Carbajal-Degante, E.; Valencia-Rodríguez, A.; Méndez-Sánchez, N.; Escalante-Ramírez, B. What is new in computer vision and artificial intelligence in medical image analysis applications. Quant. Imaging Med. Surg. 2021, 11, 3830–3853. [Google Scholar] [CrossRef] [PubMed]
- Essa, H.A.; Ismaiel, E.; Hinnawi, M.F.A. Feature-based detection of breast cancer using convolutional neural network and feature engineering. Sci. Rep. 2024, 14, 22215. [Google Scholar] [CrossRef] [PubMed]
- Luo, W.; Li, W.; Urtasun, R.; Zemel, R. Understanding the Effective Receptive Field in Deep Convolutional Neural Networks. arXiv 2017, arXiv:1701.04128. Available online: https://arxiv.org/abs/1701.04128 (accessed on 15 January 2017).
- Qian, Z.; Hayes, T.L.; Kafle, K.; Kanan, C. Do We Need Fully Connected Output Layers in Convolutional Networks? arXiv 2020, arXiv:2004.13587. Available online: https://arxiv.org/abs/2004.13587 (accessed on 29 April 2020).
- Yang, Y.; Zhang, L.; Du, M.; Bo, J.; Liu, H.; Ren, L.; Li, X.; Deen, M.J. A comparative analysis of eleven neural networks architectures for small datasets of lung images of COVID-19 patients toward improved clinical decisions. Comput. Biol. Med. 2021, 139, 104887. [Google Scholar] [CrossRef] [PubMed]
- Cuevas-Rodriguez, E.O.; Galvan-Tejada, C.E.; Maeda-Gutiérrez, V.; Moreno-Chávez, G.; Galván-Tejada, J.I.; Gamboa-Rosales, H.; Luna-García, H.; Moreno-Baez, A.; Celaya-Padilla, J.M. Comparative study of convolutional neural network architectures for gastrointestinal lesions classification. PeerJ. 2023, 11, e14806. [Google Scholar] [CrossRef] [PubMed]
- Davila, A.; Colan, J.; Hasegawa, Y. Comparison of fine-tuning strategies for transfer learning in medical image classification. arXiv 2024, arXiv:2406.10050. Available online: https://arxiv.org/abs/2406.10050 (accessed on 14 June 2024). [CrossRef]
- Mortazi, A.; Bagci, U. Automatically Designing CNN Architectures for Medical Image Segmentation. arXiv 2018, arXiv:1807.07663. Available online: https://arxiv.org/abs/1807.07663 (accessed on 19 July 2018).
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. arXiv 2015, arXiv:1511.00561. Available online: https://arxiv.org/abs/1511.00561 (accessed on 2 November 2015). [CrossRef] [PubMed]
- Basyal, G.P.; Zeng, D.; Rimal, B.P. Development of CNN Architectures using Transfer Learning Methods for Medical Image Classification. arXiv 2024, arXiv:2410.16711. Available online: https://arxiv.org/abs/2410.16711 (accessed on 22 October 2024).
- Khan, M.A.; Auvee, R.B.Z. Comparative Analysis of Resource-Efficient CNN Architectures for Brain Tumor Classification. arXiv 2024, arXiv:2411.15596. Available online: https://arxiv.org/abs/2411.15596 (accessed on 23 November 2024).
- Chollet, F. Xception: Deep Learning with Depthwise Separable Convolutions. arXiv 2016, arXiv:1610.02357. Available online: https://arxiv.org/abs/1610.02357 (accessed on 7 October 2016).
- El-Assy, A.M.; Amer, H.M.; Ibrahim, H.M.; Mohamed, M.A. A novel CNN architecture for accurate early detection and classification of Alzheimer’s disease using MRI data. Sci. Rep. 2024, 14, 3463. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.; Sun, K.; Xu, C.; Shi, X.H.; Wu, C.; Xie, T.; Meng, R.Q.; Meng, X.H.; Wang, K.S.; Xiao, H.M.; et al. Accurate recognition of colorectal cancer with semi-supervised deep learning on pathological images. Nat. Commun. 2021, 12, 6311. [Google Scholar] [CrossRef] [PubMed]
- Kayhan, O.S.; van Gemert, J.C. On Translation Invariance in CNNs: Convolutional Layers can Exploit Absolute Spatial Location. arXiv 2020, arXiv:2003.07064. Available online: https://arxiv.org/abs/2003.07064 (accessed on 30 May 2020).
- Johnston, W.J.; Fusi, S. Abstract representations emerge naturally in neural networks trained to perform multiple tasks. Nat Commun. 2023, 14, 1040. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Raga, R.C., Jr. Convolutional Neural Networks for Sentiment Analysis on Weibo Data: A Natural Language Processing Approach. arXiv 2023, arXiv:2307.06540. Available online: https://arxiv.org/abs/2307.06540 (accessed on 13 July 2023).
- Kim, H.; Jeong, Y.-S. Sentiment Classification Using Convolutional Neural Networks. Appl. Sci. 2019, 9, 2347. [Google Scholar] [CrossRef]
- Pook, T.; Freudenthal, J.; Korte, A.; Simianer, H. Using Local Convolutional Neural Networks for Genomic Prediction. Front. Genet. 2020, 11, 561497. [Google Scholar] [CrossRef] [PubMed]
- Vaz, J.M.; Balaji, S. Convolutional neural networks (CNNs): Concepts and applications in pharmacogenomics. Mol. Divers. 2021, 25, 1569–1584. [Google Scholar] [CrossRef] [PubMed]
- Kulikova, A.V.; Diaz, D.J.; Loy, J.M.; Ellington, A.D.; Wilke, C.O. Learning the local landscape of protein structures with convolutional neural networks. J. Biol. Phys. 2021, 47, 435–454. [Google Scholar] [CrossRef] [PubMed]
- Thompson, N.C.; Greenewald, K.; Lee, K.; Manso, G.F. The Computational Limits of Deep Learning. arXiv 2024, arXiv:2007.05558. Available online: https://arxiv.org/abs/2007.05558 (accessed on 27 July 2022).
- Ying, N.; Lei, Y.; Zhang, T.; Lyu, S.; Li, C.; Chen, S.; Liu, Z.; Zhao, Y.; Zhang, G. CPIA Dataset: A Comprehensive Pathological Image Analysis Dataset for Self-supervised Learning Pre-training. arXiv 2023, arXiv:2310.17902. Available online: https://arxiv.org/abs/2310.17902 (accessed on 27 October 2023).
- Rodriguez, J.P.M.; Rodriguez, R.; Silva, V.W.K.; Kitamura, F.C.; Corradi, G.C.A.; de Marchi, A.C.B.; Rieder, R. Artificial intelligence as a tool for diagnosis in digital pathology whole slide images: A systematic review. J. Pathol. Inform. 2022, 13, 100138. [Google Scholar] [CrossRef] [PubMed]
- Ding, K.; Zhou, M.; Wang, H.; Gevaert, O.; Metaxas, D.; Zhang, S. A Large-scale Synthetic Pathological Dataset for Deep Learning-enabled Segmentation of Breast Cancer. Sci. Data 2023, 10, 231. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Sánchez, A.; Avlona, N.-R.; Juodelyte, D.; Sourget, T.; Vang-Larsen, C.; Rogers, A.; Zając, H.D.; Cheplygina, V. Copycats: The many lives of a publicly available medical imaging dataset. arXiv 2024, arXiv:2402.06353. Available online: https://arxiv.org/abs/2402.06353 (accessed on 9 February 2024).
- Xu, H.; Usuyama, N.; Bagga, J.; Zhang, S.; Rao, R.; Naumann, T.; Wong, C.; Gero, Z.; González, J.; Gu, Y.; et al. A whole-slide foundation model for digital pathology from real-world data. Nature 2024, 630, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Cong, C.; Xuan, S.; Liu, S.; Pagnucco, M.; Zhang, S.; Song, Y. Dataset Distillation for Histopathology Image Classification. arXiv 2024, arXiv:2408.09709. Available online: https://arxiv.org/abs/2408.09709 (accessed on 19 August 2024).
- Hilgers, L.; Ghaffari Laleh, N.; West, N.P.; Westwood, A.; Hewitt, K.J.; Quirke, P.; Grabsch, H.I.; Carrero, Z.I.; Matthaei, E.; Loeffler, C.M.L.; et al. Automated curation of large-scale cancer histopathology image datasets using deep learning. Histopathology 2024, 84, 1139–1153. [Google Scholar] [CrossRef] [PubMed]
- Haghighat, M.; Browning, L.; Sirinukunwattana, K.; Malacrino, S.; Khalid Alham, N.; Colling, R.; Cui, Y.; Rakha, E.; Hamdy, F.C.; Verrill, C.; et al. Automated quality assessment of large digitised histology cohorts by artificial intelligence. Sci. Rep. 2022, 12, 5002. [Google Scholar] [CrossRef] [PubMed]
- Homeyer, A.; Geißler, C.; Schwen, L.O.; Zakrzewski, F.; Evans, T.; Strohmenger, K.; Westphal, M.; Bülow, R.D.; Kargl, M.; Karjauv, A.; et al. Recommendations on compiling test datasets for evaluating artificial intelligence solutions in pathology. Mod. Pathol. 2022, 35, 1759–1769. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Casado, J.L.; Molina-Cabello, M.A.; Luque-Baena, R.M. Enhancing Histopathological Image Classification Performance through Synthetic Data Generation with Generative Adversarial Networks. Sensors 2024, 24, 3777. [Google Scholar] [CrossRef] [PubMed]
- Usui, K.; Ogawa, K.; Goto, M.; Sakano, Y.; Kyougoku, S.; Daida, H. Quantitative evaluation of deep convolutional neural network-based image denoising for low-dose computed tomography. Vis. Comput. Ind. Biomed. Art 2021, 4, 21. [Google Scholar] [CrossRef] [PubMed]
- Allier, C.; Hervé, L.; Paviolo, C.; Mandula, O.; Cioni, O.; Pierré, W.; Andriani, F.; Padmanabhan, K.; Morales, S. CNN-based cell analysis: From image to quantitative representation. Front. Phys. 2022, 9, id.848. [Google Scholar] [CrossRef]
- Tam, T.Y.C.; Liang, L.; Chen, K.; Wang, H.; Wu, W. A Quantitative Approach for Evaluating Disease Focus and Interpretability of Deep Learning Models for Alzheimer’s Disease Classification. arXiv 2024, arXiv:2409.04888. Available online: https://doi.org/10.48550/arXiv.2409.04888 (accessed on 7 September 2024).
- Nakagawa, S.; Ono, N.; Hakamata, Y.; Ishii, T.; Saito, A.; Yanagimoto, S.; Kanaya, S. Quantitative evaluation model of variable diagnosis for chest X-ray images using deep learning. PLoS Digit. Health 2024, 3, e0000460. [Google Scholar] [CrossRef] [PubMed]
- Amerikanos, P.; Maglogiannis, I. Image Analysis in Digital Pathology Utilizing Machine Learning and Deep Neural Networks. J. Pers. Med. 2022, 12, 1444. [Google Scholar] [CrossRef] [PubMed]
- Redlich, J.-P.; Feuerhake, F.; Weis, J.; Schaadt, N.S.; Teuber-Hanselmann, S.; Buck, C.; Luttmann, S.; Eberle, A.; Nikolin, S.; Appenzeller, A.; et al. Applications of artificial intelligence in the analysis of histopathology images of gliomas: A review. arXiv 2024, arXiv:2401.15022. Available online: https://arxiv.org/abs/2401.15022 (accessed on 26 January 2024). [CrossRef]
- Talo, M. Automated Classification of Histopathology Images Using Transfer Learning. arXiv 2019, arXiv:1903.10035. Available online: https://arxiv.org/abs/1903.10035 (accessed on 24 March 2019). [CrossRef]
- Sekhar, A.; Gupta, R.K.; Sethi, A. Few-Shot Histopathology Image Classification: Evaluating State-of-the-Art Methods and Unveiling Performance Insights. arXiv 2024, arXiv:2408.13816. Available online: https://arxiv.org/abs/2408.13816 (accessed on 25 August 2024).
- Shafi, S.; Parwani, A.V. Artificial intelligence in diagnostic pathology. Diagn. Pathol. 2023, 18, 109. [Google Scholar] [CrossRef] [PubMed]
- Tsuneki, M. Editorial on Special Issue “Artificial Intelligence in Pathological Image Analysis”. Diagnostics 2023, 13, 828. [Google Scholar] [CrossRef] [PubMed]
- Song, A.H.; Jaume, G.; Williamson, D.F.K.; Lu, M.Y.; Vaidya, A.; Miller, T.R.; Mahmood, F. Artificial Intelligence for Digital and Computational Pathology. arXiv 2023, arXiv:2401.06148. Available online: https://arxiv.org/abs/2401.06148 (accessed on 13 December 2023). [CrossRef]
- Byeon, S.J.; Park, J.; Cho, Y.A.; Cho, B.J. Automated histological classification for digital pathology images of colonoscopy specimen via deep learning. Sci. Rep. 2022, 12, 12804. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Cheng, J.; Meng, L.; Yan, H.; He, Y.; Shi, H.; Guan, T.; Han, A. DeepTree: Pathological Image Classification Through Imitating Tree-Like Strategies of Pathologists. IEEE Trans. Med. Imaging 2024, 43, 1501–1512. [Google Scholar] [CrossRef] [PubMed]
- Esteva, A.; Chou, K.; Yeung, S.; Naik, N.; Madani, A.; Mottaghi, A.; Liu, Y.; Topol, E.; Dean, J.; Socher, R. Deep learning-enabled medical computer vision. npj Digit. Med. 2021, 4, 5. [Google Scholar] [CrossRef] [PubMed]
- McGenity, C.; Clarke, E.L.; Jennings, C.; Matthews, G.; Cartlidge, C.; Freduah-Agyemang, H.; Stocken, D.D.; Treanor, D. Artificial intelligence in digital pathology: A systematic review and meta-analysis of diagnostic test accuracy. npj Digit. Med. 2024, 7, 114. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Soltan, A.A.S.; Clifton, D.A. Machine learning generalizability across healthcare settings: Insights from multi-site COVID-19 screening. npj Digit. Med. 2022, 5, 69. [Google Scholar] [CrossRef] [PubMed]
- Ada, S.E.; Ugur, E.; Akin, H.L. Generalization in Transfer Learning. arXiv 2021, arXiv:1909.01331. Available online: https://arxiv.org/abs/1909.01331 (accessed on 22 February 2021).
- Ferber, D.; Wölflein, G.; Wiest, I.C.; Ligero, M.; Sainath, S.; Ghaffari Laleh, N.; El Nahhas, O.S.M.; Müller-Franzes, G.; Jäger, D.; Truhn, D.; et al. In-context learning enables multimodal large language models to classify cancer pathology images. Nat. Commun. 2024, 15, 10104. [Google Scholar] [CrossRef] [PubMed]
- Hanif, A.M.; Beqiri, S.; Keane, P.A.; Campbell, J.P. Applications of interpretability in deep learning models for ophthalmology. Curr. Opin. Ophthalmol. 2021, 32, 452–458. [Google Scholar] [CrossRef] [PubMed]
- Liang, M.; Chen, Q.; Li, B.; Wang, L.; Wang, Y.; Zhang, Y.; Wang, R.; Jiang, X.; Zhang, C. Interpretable classification of pathology whole-slide images using attention based context-aware graph convolutional neural network. Comput. Methods Programs Biomed. 2023, 229, 107268. [Google Scholar] [CrossRef] [PubMed]
- Tempel, F.; Groos, D.; Ihlen, A.F.E.; Adde, L.; Strümke, I. Choose Your Explanation: A Comparison of SHAP and GradCAM in Human Activity Recognition. arXiv 2024, arXiv:2412.16003. Available online: https://arxiv.org/abs/2412.16003 (accessed on 20 December 2024).
- Brussee, S.; Buzzanca, G.; Schrader, A.M.R.; Kers, J. Graph Neural Networks in Histopathology: Emerging Trends and Future Directions. arXiv 2024, arXiv:2406.12808. Available online: https://arxiv.org/abs/2406.12808 (accessed on 21 June 2024). [CrossRef] [PubMed]
- Chang, J.; Hatfield, B. Advancements in computer vision and pathology: Unraveling the potential of artificial intelligence for precision diagnosis and beyond. Adv. Cancer Res. 2024, 161, 431–478. [Google Scholar] [CrossRef] [PubMed]
- Doğan, R.S.; Yılmaz, B. Histopathology image classification: Highlighting the gap between manual analysis and AI automation. Front. Oncol. 2024, 13, 1325271. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Gou, F.; Xiao, C.; Liu, J.; Zhou, J. Semi-supervised recognition for artificial intelligence assisted pathology image diagnosis. Sci. Rep. 2024, 14, 21984. [Google Scholar] [CrossRef] [PubMed]
- Gómez-de-Mariscal, E.; Del Rosario, M.; Pylvänäinen, J.W.; Jacquemet, G.; Henriques, R. Harnessing artificial intelligence to reduce phototoxicity in live imaging. J. Cell Sci. 2024, 137, jcs261545. [Google Scholar] [CrossRef] [PubMed]
- Mühlberg, A.; Ritter, P.; Langer, S.; Goossens, C.; Nübler, S.; Schneidereit, D.; Taubmann, O.; Denzinger, F.; Nörenberg, D.; Haug, M.; et al. SEMPAI: A Self-Enhancing Multi-Photon Artificial Intelligence for Prior-Informed Assessment of Muscle Function and Pathology. Adv. Sci. 2023, 10, e2206319. [Google Scholar] [CrossRef] [PubMed]
- Mameed, M.A.S.; Qureshi, A.M.; Kaushik, A. Bias Mitigation via Synthetic Data Generation: A Review. Electronics 2024, 13, 3909. [Google Scholar] [CrossRef]
- Yamaguchi, S. Generative Semi-supervised Learning with Meta-Optimized Synthetic Samples. arXiv 2023, arXiv:2309.16143. Available online: https://arxiv.org/abs/2309.16143 (accessed on 28 September 2023).
- Lu, Y.; Shen, M.; Wang, M.; Wang, X.; van Rechem, C.; Fu, T.; Wei, W. Machine Learning for Synthetic Data Generation: A Review. arXiv 2023, arXiv:2302.04062. Available online: https://arxiv.org/abs/2302.04062 (accessed on 8 February 2023).
- Goyal, M.; Mahmoud, Q. A Systematic Review of Synthetic Data Generation Techniques Using Generative AI. Electronics 2024, 13, 3509. [Google Scholar] [CrossRef]
- Wang, Z.; Mao, J.; Xiang, L.; Yamasaki, T. From Obstacle to Opportunity: Enhancing Semi-supervised Learning with Synthetic Data. arXiv 2024, arXiv:2405.16930. Available online: https://arxiv.org/abs/2405.16930v1 (accessed on 27 May 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matsuzaka, Y.; Yashiro, R. The Diagnostic Classification of the Pathological Image Using Computer Vision. Algorithms 2025, 18, 96. https://doi.org/10.3390/a18020096
Matsuzaka Y, Yashiro R. The Diagnostic Classification of the Pathological Image Using Computer Vision. Algorithms. 2025; 18(2):96. https://doi.org/10.3390/a18020096
Chicago/Turabian StyleMatsuzaka, Yasunari, and Ryu Yashiro. 2025. "The Diagnostic Classification of the Pathological Image Using Computer Vision" Algorithms 18, no. 2: 96. https://doi.org/10.3390/a18020096
APA StyleMatsuzaka, Y., & Yashiro, R. (2025). The Diagnostic Classification of the Pathological Image Using Computer Vision. Algorithms, 18(2), 96. https://doi.org/10.3390/a18020096