Abstract
This study investigates the application of advanced deep learning models to forecast fossil energy prices, a critical factor influencing global economic stability. Unlike previous research, this study conducts a comparative analysis of Gated Recurrent Unit (GRU), Recurrent Neural Network (RNN), Bidirectional Long Short-Term Memory (Bi-LSTM), Long Short-Term Memory (LSTM), Convolutional Neural Network (CNN), and Deep Neural Network (DNN) models. The evaluation metrics employed include Root Mean Squared Error (RMSE) and Mean Absolute Percentage Error (MAPE). The results reveal that recurrent architectures, particularly GRU, LSTM, and Bi-LSTM, consistently outperform feedforward and convolutional models, demonstrating superior ability to capture temporal dependencies and nonlinear dynamics in energy markets. In contrast, the RNN and DNN show relatively weaker generalization capabilities. Additionally, visualizations of actual versus predicted prices for each model further emphasize superior forecasting accuracy of recurrent models. The results highlight the potential of deep learning in enhancing investment and policy decisions. Additionally, the results provide significant implications for policymakers and investors by emphasizing the value of accurate energy price forecasting in mitigating market volatility, improving portfolio management, and supporting evidence-based energy policies.