A Hybrid Quantum–Classical Spectral Solver for Nonlinear Differential Equations
Abstract
1. Introduction and Motivation
Prior Work
2. Problem Statement and Classical Spectral Solver
- Constant coefficient: .
- Variable coefficient: .
- Nonlinear coefficient: .
3. Hybrid Quantum–Classical Strategy
3.1. Motivation for Hybridisation
3.2. Quantum Kernel for Residual Evaluation
- from scipy.optimize import minimize
- import~cudaq
- def loss_function(theta):
- result = cudaq.observe(my_ansatz, H, theta)
- return result.expectation()
- theta0 = [0.1] ∗ n_qubits
- opt_result = minimize(
- loss_function,
- theta0,
- method = ‘BFGS’
- )
3.3. Division of Labour
- Classical: This processor constructs CGL nodes, differentiation matrices, and the nonlinear residual symbolically. It performs the outer optimisation loop (e.g., BFGS) and updates the ansatz parameters.
- Quantum: This processor implements the variational circuit and estimates via repeated measurements. No Jacobian or gradient information is required at this stage, although quantum gradient evaluation could be incorporated in future extensions.
3.4. Binary Quadratic Model (BQM) Formulation and Mapping
4. Implementation and Preliminary Results
4.1. Constant and Variable Coefficients
4.2. Nonlinear Coefficient
5. Hybrid Picard–QUBO Annealer Results
5.1. Comparison with CUDA-Q VQE Approach
5.2. Additional Plots
6. Comparison with Alternative Approaches
7. Discussion and Outlook
7.1. Encoding Choices Across Hardware Paradigms
7.2. Limitations and Future Work
8. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| Ansatz | A parameterised quantum circuit used as a trial state in variational algorithms. |
| BFGS | A quasi-Newton method for unconstrained nonlinear optimisation. |
| BQM | Binary Quadratic Model: The general class of unconstrained binary optimisation problems. |
| Chebyshev–Gauss–Lobatto nodes | Collocation points in spectral methods that cluster near the endpoints of the interval. |
| CUDA–Q | NVIDIA’s framework for hybrid quantum–classical programming on classical, emulated, and hardware backends. |
| CUBO | Cubic unconstrained binary optimisation. |
| H–DES | A quantum,-classical hybrid differential equation solver [24] that encodes the entire solution into a quantum state and performs spectral expansion on a quantum processor. |
| Loss function | The scalar objective used in optimisation. |
| NISQ | Noisy intermediate-scale quantum: the current generation of quantum devices with up to roughly a thousand qubits, lacking full error correction. |
| QUBO | Quadratic Unconstrained Binary Optimisation |
| RBF | Radial Basis Function: A basis used in meshfree discretisation methods. |
| Residual | The deviation from the governing differential equation at the collocation nodes, . |
| Variational quantum algorithm (VQA) | A hybrid algorithm coupling parameterised quantum circuits with classical optimisation; prominent examples include VQE and QAOA. |
Appendix A. Notes on the Annealer Implementation
Appendix A.1. QUBO Formulation and Example
- qubo ={…} #dictionary of {(i,j): coefficient}
- annealer = AutomatskiInitiumTabuSolver(host,port)
- answer,value = annealer.solve(qubo)
- print(“Annealer solution:”, answer)
- print(“Objective value:”, value)
Appendix A.2. Scope of QUBO-Suitable Problems
Appendix A.3. Pure Annealer Implementation

References
- Heinrich, H. Numerical analysis on a quantum computer. Int. Conf.-Large-Scale Sci. Comput. 2005, 3743, 28–39. [Google Scholar] [CrossRef]
- Trefethen, L.N. Spectral Methods in MATLAB; SIAM: Philadelphia, PA, USA, 2000. [Google Scholar]
- Zhang, C. Quantum Algorithms and Complexity for Numerical Problems. Ph.D. Thesis, Columbia University, New York, NY, USA, 2011. [Google Scholar] [CrossRef]
- Meng, F.-X.; Yu, X.; Zhang, Z. An Improved Quantum Algorithm for Spectral Regression. In Proceedings of the 2020 Asia Conference on Computers and Communications (ACCC), Singapore, 18–20 September 2020. [Google Scholar] [CrossRef]
- Agaian, S.S.; Klappenecker, A. Quantum Computing and a Unified Approach to Fast Unitary Transforms. In Image Processing: Algorithms and Systems; SPIE: Cergy-Pontoise, France, 2002. [Google Scholar] [CrossRef]
- Au-Yeung, R.; Camino, B.; Rathore, O.; Kendon, V. Quantum algorithms for scientific computing. Rep. Prog. Phys. 2024, 87, 116001. [Google Scholar] [CrossRef]
- Preskill, J. Quantum computing in the NISQ era and beyond. Quantum 2018, 2, 79. [Google Scholar] [CrossRef]
- Schroeder, D.V. The variational-relaxation algorithm for finding quantum bound states. Am. J. Phys. 2017, 85, 698–704. [Google Scholar] [CrossRef]
- Chernyavskiy, A.; Khamitov, K.; Teplov, A.; Voevodin, V.; Voevodin, V. Numerical characteristics of quantum computer simulation. Int. Conf.-Micro-Nano-Electron. 2016, 10224, 735–740. [Google Scholar] [CrossRef]
- Kyriienko, O.; Paine, A.E.; Elfving, V.E. Solving nonlinear differential equations with differentiable quantum circuits. Phys. Rev. A 2021, 103, 052416. [Google Scholar] [CrossRef]
- Leong, F.Y.; Ewe, W.-B.; Koh, D.E. Variational quantum evolution equation solver. Sci. Rep. 2022, 12, 14906. [Google Scholar] [CrossRef]
- Arora, A.; Ward, B.C.; Oskay, C. An Implementation of the Finite Element Method in Hybrid Classical/Quantum Computers. arXiv 2024, arXiv:2411.09038. [Google Scholar] [CrossRef]
- Tennie, F.; Magri, L. Solving nonlinear differential equations on quantum computers: A Fokker-Planck approach. arXiv 2024, arXiv:2401.13500. [Google Scholar] [CrossRef]
- Zhang, Y.; Shao, C. Quantum spectral method for gradient and Hessian estimation. arXiv 2024, arXiv:2407.03833. [Google Scholar] [CrossRef]
- Berry, D.W.; Costa, S.J. Quantum algorithms for time-dependent differential equations using Dyson series. Quantum 2024, 8, 1369. [Google Scholar] [CrossRef]
- Mizuno, Y.; Komatsuzaki, K. Quantum algorithm for dynamic mode decomposition integrated with a quantum differential equation solver. Phys. Rev. Res. 2024, 6, 043031. [Google Scholar] [CrossRef]
- Aseeri, S. State-of-the-art FFT: Algorithms, implementations and applications. In Reflections on the 2018 SIAM Conference on Parallel Processing for Scientific Computing; SIAM: Philadelphia, PA, USA, 2018; Available online: https://www.siam.org/publications/siam-news/articles/state-of-the-art-fft-algorithms-implementations-and-applications/ (accessed on 10 October 2025).
- Muite, B.K.; Aseeri, S. Benchmarking solvers for the one-dimensional cubic nonlinear Klein–Gordon equation on a single core. In Proceedings of the International Symposium on Benchmarking, Measuring and Optimization (Bench 2019), Denver, CO, USA, 14–16 November 2019; pp. 172–184. Available online: https://link.springer.com/chapter/10.1007/978-3-030-49556-5_18 (accessed on 10 October 2025).
- Leu, B.; Aseeri, S.; Muite, B. A comparison of parallel profiling tools for programs utilizing the FFT. In Proceedings of the International Conference on High Performance Computing in Asia-Pacific Region (HPC Asia), Online, 20–22 January 2021; Available online: https://dl.acm.org/doi/10.1145/3440722.3440881 (accessed on 10 October 2025).
- Nuriyev, E.; Manumachu, R.R.; Aseeri, S.; Verma, M.K.; Lastovetsky, A.L. SUARA: A scalable universal allreduce communication algorithm for acceleration of parallel deep learning applications. J. Parallel Distrib. Comput. 2024, 183, 104767. [Google Scholar] [CrossRef]
- Aseeri, S.A. Distributed memory fast Fourier transforms in the exascale era. In Proceedings of the 2025 International Conference on Intelligent Control, Computing and Communications (IC3), Mathura, India, 13–14 February 2025; pp. 1043–1046. [Google Scholar] [CrossRef]
- Lubasch, M.; Joo, J.; Moinier, P.; Kiffner, M.; Jaksch, D. Variational quantum algorithms for nonlinear problems. Phys. Rev. A 2020, 101, 010301. [Google Scholar] [CrossRef]
- Sarma, A.; Watts, T.W.; Moosa, M.; Liu, Y.; McMahon, P.L. Quantum variational solving of nonlinear and multi-dimensional partial differential equations. Phys. Rev. A 2024, 109, 062616. [Google Scholar] [CrossRef]
- Jaffali, H.; de Araujo, J.B.; Milazzo, N.; Reina, M.; de Boutray, H.; Baumann, K.; Holweck, F. H-DES: A quantum–classical hybrid differential equation solver. arXiv 2024, arXiv:2410.01130. [Google Scholar]
- Wang, Y.; Tu, H.; Liu, W.; Xiao, W.; Lan, Q. Two Chebyshev spectral methods for solving normal modes in atmospheric acoustics. Entropy 2021, 23, 705. [Google Scholar] [CrossRef] [PubMed]
- Endo, K.; Takahashi, K.Z. Quantum-Accelerated Solution of Nonlinear Equations from Variational Principles. arXiv 2025, arXiv:2508.17606. [Google Scholar] [CrossRef]
- Takagi, K.; Moriya, N.; Aoki, S.; Endo, K.; Muramatsu, M.; Fukagata, K. Implementation of spectral methods on Ising machines: Toward flow simulations on quantum annealers. Fluid Dyn. Res. 2024, 56, 061401. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Chen, Z.; Shu, C.; Rebentrost, P.; Liu, Y.G.; Chew, S.C.; Khoo, B.C.; Cui, Y.D. A variational quantum algorithm-based numerical method for solving potential and Stokes flows. Ocean. Eng. 2024, 292, 116494. [Google Scholar] [CrossRef]
- Li, J.; Zhao, Y. A review of meshless methods for solving partial differential equations in recent decades. Appl. Numer. Math. 2022, 182, 248–261. [Google Scholar] [CrossRef]
- Novak, R. Quantum Algorithm for Solving the Wave Equation on a Hexagonal Grid. IEEE Access 2024, 12, 131009–131022. [Google Scholar] [CrossRef]







Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aseeri, S.A. A Hybrid Quantum–Classical Spectral Solver for Nonlinear Differential Equations. Algorithms 2025, 18, 678. https://doi.org/10.3390/a18110678
Aseeri SA. A Hybrid Quantum–Classical Spectral Solver for Nonlinear Differential Equations. Algorithms. 2025; 18(11):678. https://doi.org/10.3390/a18110678
Chicago/Turabian StyleAseeri, Samar A. 2025. "A Hybrid Quantum–Classical Spectral Solver for Nonlinear Differential Equations" Algorithms 18, no. 11: 678. https://doi.org/10.3390/a18110678
APA StyleAseeri, S. A. (2025). A Hybrid Quantum–Classical Spectral Solver for Nonlinear Differential Equations. Algorithms, 18(11), 678. https://doi.org/10.3390/a18110678

