On Assessing the Performance of LLMs for Target-Level Sentiment Analysis in Financial News Headlines
Abstract
:1. Introduction
- (RQ1)
- How effectively do zero-shot LLMs perform in target-level financial sentiment analysis, and how do they compare to other state-of-the-art sentiment analysis techniques?
- (RQ2)
- How do the performances of different versions of ChatGPT (specifically, ChatGPT 3.5, ChatGPT 4, and ChatGPT 4o) compare to those of Gemini models (including Gemini 1 Pro, Gemini 1.5 Flash, and Gemini 1.5 Pro) in target-level sentiment analysis tasks under zero-shot scenarios?
- (1)
- We present and publicly release a novel dataset that is specifically manually annotated for target-level sentiment analysis. This dataset consists of 1476 headlines from the financial sector. Studying target-level sentiment in news headlines is crucial because headlines shape immediate perceptions, influence public opinion, and dominate social media sharing, offering a concise and impactful representation of the news that often carries more bias and emotional weight than the full text. This resource is a critical instrument for the development and evaluation of sentiment analysis models that differentiate and evaluate sentiments directed at specific entities within the financial domain, as it uniquely addresses the nuanced requirements of target-level analysis in financial texts. To the best of our knowledge, no other dataset with the given characteristics is currently available;
- (2)
- Utilizing the contributed dataset, we present a thorough comparative analysis of LLMs compared to conventional sentiment analysis methods, emphasizing their strengths and weaknesses in the context of target-level financial sentiment analysis. This study is one of the first to systematically assess the efficacy of LLMs, such as different versions of Gemini and ChatGPT, in conducting target-level financial sentiment analysis within a zero-shot learning approach. Our work thus contributes to the development of NLP tools in the financial sector, enabling stakeholders to make more informed decisions by utilizing target-level sentiment analysis.
2. Literature Review
2.1. Financial Sentiment Analysis
2.2. Evolution of Target and Aspect-Based Sentiment Analysis
3. Methodology
3.1. Dataset Creation and Annotation
- Assess the sentiment of each headline exclusively with respect to the target rather than considering the overall sentiment of the entire headline. Annotators should assume the viewpoint of an investor and evaluate the probable influence of the headline on investment decisions.
- Assign a sentiment score to a headline in relation to the target, using the following scale: (0) for a neutral sentiment, (−1) for a negative sentiment, and (+1) for a positive sentiment.
- Formulate annotations based solely on the sentiment directly conveyed in the headline rather than relying on external information.
- Assign a neutral sentiment score of 0 to headlines that contain muddled sentiments, uncertainty, or ambiguity.
- Assign a neutral sentiment when there is no evident positive or negative sentiment regarding the target.
3.2. Target-Level Sentiment Classification Using Traditional Methods
3.3. Target-Level Sentiment Classification with ChatGPT and Gemini
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adhikari, S.; Thapa, S.; Naseem, U.; Lu, H.Y.; Bharathy, G.; Prasad, M. Explainable hybrid word representations for sentiment analysis of financial news. Neural Netw. 2023, 164, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A. Sentiment analysis of financial news. In Proceedings of the 2020 12th International Conference on Computational Intelligence and Communication Networks (CICN), Bhimtal, India, 25–26 September 2020; pp. 312–315. [Google Scholar]
- Pang, B.; Lee, L. Opinion mining and sentiment analysis. Found. Trends Inf. Retr. 2008, 2, 1–135. [Google Scholar] [CrossRef]
- Deng, S.; Zhu, Y.; Yu, Y.; Huang, X. An integrated approach of ensemble learning methods for stock index prediction using investor sentiments. Expert Syst. Appl. 2024, 238, 121710. [Google Scholar] [CrossRef]
- Mishev, K.; Gjorgjevikj, A.; Vodenska, I.; Chitkushev, L.T.; Trajanov, D. Evaluation of sentiment analysis in finance: From lexicons to transformers. IEEE Access 2020, 8, 131662–131682. [Google Scholar] [CrossRef]
- Simmering, P.F.; Huoviala, P. Large language models for aspect-based sentiment analysis. arXiv 2023, arXiv:2310.18025. [Google Scholar]
- Brauwers, G.; Frasincar, F. A survey on aspect-based sentiment classification. ACM Comput. Surv. 2022, 55, 1–37. [Google Scholar] [CrossRef]
- Phan, H.T.; Nguyen, N.T.; Hwang, D. Aspect-level sentiment analysis: A survey of graph convolutional network methods. Inf. Fusion 2023, 91, 149–172. [Google Scholar] [CrossRef]
- Atandoh, P.; Zhang, F.; Adu-Gyamfi, D.; Atandoh, P.H.; Nuhoho, R.E. Integrated deep learning paradigm for document-based sentiment analysis. J. King Saud Univ.-Comput. Inf. Sci. 2023, 35, 101578. [Google Scholar] [CrossRef]
- Shirsat, V.S.; Jagdale, R.S.; Deshmukh, S.N. Document-level sentiment analysis from news articles. In Proceedings of the 2017 International Conference on Computing, Communication, Control and Automation (ICCUBEA), Pune, India, 17–18 August 2017; pp. 1–4. [Google Scholar]
- Lutz, B.; Pröllochs, N.; Neumann, D. Sentence-level sentiment analysis of financial news using distributed text representations and multi-instance learning. arXiv 2018, arXiv:1901.00400. [Google Scholar]
- Husejinović, A.; Mašetić, Z. Document-based sentiment analysis on financial texts. In International Symposium on Innovative and Interdisciplinary Applications of Advanced Technologies; Springer Nature: Cham, Switzerland, 2023; pp. 251–262. [Google Scholar]
- Du, K.; Xing, F.; Cambria, E. Incorporating multiple knowledge sources for targeted aspect-based financial sentiment analysis. ACM Trans. Manag. Inf. Syst. 2023, 14, 1–24. [Google Scholar] [CrossRef]
- Žitnik, S.; Blagus, N.; Bajec, M. Target-level sentiment analysis for news articles. Knowl.-Based Syst. 2022, 249, 108939. [Google Scholar] [CrossRef]
- Ho, S.Y.; Choi, K.W.S.; Yang, F.F. Harnessing aspect-based sentiment analysis: How are tweets associated with forecast accuracy? J. Assoc. Inf. Syst. 2019, 20, 2. [Google Scholar] [CrossRef]
- Zhang, B.; Yang, H.; Liu, X.Y. Instruct-finGPT: Financial sentiment analysis by instruction tuning of general-purpose large language models. arXiv 2023, arXiv:2306.12659. [Google Scholar] [CrossRef]
- Minaee, S.; Mikolov, T.; Nikzad, N.; Chenaghlu, M.; Socher, R.; Amatriain, X.; Gao, J. Large language models: A survey. arXiv 2024, arXiv:2402.06196. [Google Scholar]
- Yekrangi, M.; Nikolov, N.S. Domain-specific sentiment analysis: An optimized deep learning approach for the financial markets. IEEE Access 2023, 11, 70248–70262. [Google Scholar] [CrossRef]
- Usmani, S.; Shamsi, J.A. LSTM-based stock prediction using weighted and categorized financial news. PLoS ONE 2023, 18, e0282234. [Google Scholar] [CrossRef]
- Keynes, J.M. The general theory of employment. Q. J. Econ. 1937, 51, 209–223. [Google Scholar] [CrossRef]
- Baker, M.; Wurgler, J. Investor sentiment in the stock market. J. Econ. Perspect. 2007, 21, 129–151. [Google Scholar] [CrossRef]
- Tetlock, P.C. Giving content to investor sentiment: The role of media in the stock market. J. Financ. 2007, 62, 1139–1168. [Google Scholar] [CrossRef]
- Loughran, T.; McDonald, B. When is a liability not a liability? Textual analysis, dictionaries, and 10-Ks. J. Financ. 2011, 66, 35–65. [Google Scholar] [CrossRef]
- Sohangir, S.; Petty, N.; Wang, D. Financial sentiment lexicon analysis. In Proceedings of the 2018 IEEE 12th International Conference on Semantic Computing (ICSC), Laguna Hills, CA, USA, 31 January–2 February 2018; pp. 286–289. [Google Scholar]
- Bonta, V.; Kumaresh, N.; Janardhan, N. A comprehensive study on lexicon-based approaches for sentiment analysis. Asian J. Comput. Sci. Technol. 2019, 8, 1–6. [Google Scholar] [CrossRef]
- Taj, S.; Shaikh, B.B.; Meghji, A.F. Sentiment analysis of news articles: A lexicon-based approach. In Proceedings of the 2019 2nd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), Sukkur, Pakistan, 30–31 January 2019; pp. 1–5. [Google Scholar]
- Shang, L.; Xi, H.; Hua, J.; Tang, H.; Zhou, J. A lexicon-enhanced collaborative network for targeted financial sentiment analysis. Inf. Process. Manag. 2023, 60, 103187. [Google Scholar] [CrossRef]
- Schumaker, R.P.; Chen, H. Textual analysis of stock market prediction using breaking financial news: The AZFin text system. ACM Trans. Inf. Syst. (TOIS) 2009, 27, 1–19. [Google Scholar] [CrossRef]
- Malo, P.; Sinha, A.; Korhonen, P.; Wallenius, J.; Takala, P. Good debt or bad debt: Detecting semantic orientations in economic texts. J. Assoc. Inf. Sci. Technol. 2014, 65, 782–796. [Google Scholar] [CrossRef]
- Dridi, A.; Atzeni, M.; Recupero, D.R. FineNews: Fine-grained semantic sentiment analysis on financial microblogs and news. Int. J. Mach. Learn. Cybern. 2019, 10, 2199–2207. [Google Scholar] [CrossRef]
- Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv 2018, arXiv:1810.04805. [Google Scholar]
- Refaeli, D.; Hajek, P. Detecting fake online reviews using fine-tuned BERT. In Proceedings of the 2021 5th International Conference on E-Business and Internet, Singapore, 15–17 October 2021; pp. 76–80. [Google Scholar]
- Araci, D. Finbert: Financial sentiment analysis with pre-trained language models. arXiv 2019, arXiv:1908.10063. [Google Scholar]
- Farimani, S.A.; Jahan, M.V.; Fard, A.M.; Tabbakh, S.R.K. Investigating the informativeness of technical indicators and news sentiment in financial market price prediction. Knowl.-Based Syst. 2022, 247, 108742. [Google Scholar] [CrossRef]
- Leippold, M. Sentiment spin: Attacking financial sentiment with GPT-3. Financ. Res. Lett. 2023, 55, 103957. [Google Scholar] [CrossRef]
- Du, K.; Xing, F.; Mao, R.; Cambria, E. An evaluation of reasoning capabilities of large language models in financial sentiment analysis. In Proceedings of the IEEE Conference on Artificial Intelligence (IEEE CAI), Singapore, 25–27 June 2024. [Google Scholar]
- Chen, W.; Du, J.; Zhang, Z.; Zhuang, F.; He, Z. A hierarchical interactive network for joint span-based aspect-sentiment analysis. arXiv 2022, arXiv:2208.11283. [Google Scholar]
- Lopez-Lira, A.; Tang, Y. Can ChatGPT forecast stock price movements? Return predictability and large language models. arXiv 2023, arXiv:2304.07619. [Google Scholar] [CrossRef]
- Yi, J.; Nasukawa, T.; Bunescu, R.; Niblack, W. Sentiment analyzer: Extracting sentiments about a given topic using natural language processing techniques. In Proceedings of the Third IEEE International Conference on Data Mining, Melbourne, FL, USA, 19–22 November 2003; pp. 427–434. [Google Scholar]
- Webb, G.I.; Keogh, E.; Miikkulainen, R. Naïve Bayes. Encycl. Mach. Learn. 2010, 15, 713–714. [Google Scholar]
- Noble, W.S. What is a support vector machine? Nat. Biotechnol. 2006, 24, 1565–1567. [Google Scholar] [CrossRef]
- Varghese, R.; Jayasree, M. Aspect-based sentiment analysis using support vector machine classifier. In Proceedings of the 2013 International Conference on Advances in Computing, Communications and Informatics (ICACCI), Mysore, India, 22–25 August 2013; pp. 1581–1586. [Google Scholar]
- Wang, X.; Li, F.; Zhang, Z.; Xu, G.; Zhang, J.; Sun, X. A unified position-aware convolutional neural network for aspect-based sentiment analysis. Neurocomputing 2021, 450, 91–103. [Google Scholar] [CrossRef]
- Sadr, H.; Pedram, M.M.; Teshnehlab, M. Convolutional neural network equipped with attention mechanism and transfer learning for enhancing performance of sentiment analysis. J. AI Data Min. 2021, 9, 141–151. [Google Scholar]
- Rietzler, A.; Stabinger, S.; Opitz, P.; Engl, S. Adapt or get left behind: Domain adaptation through BERT language model fine-tuning for aspect-target sentiment classification. arXiv 2019, arXiv:1908.11860. [Google Scholar]
- Karimi, A.; Rossi, L.; Prati, A. Adversarial training for aspect-based sentiment analysis with BERT. In Proceedings of the 2020 25th International Conference on Pattern Recognition (ICPR), Milan, Italy, 10–15 January 2021; pp. 8797–8803. [Google Scholar]
- Silva, E.H.D.; Marcacini, R.M. Aspect-based sentiment analysis using BERT with disentangled attention. In Proceedings of the LatinX in AI (LXAI) Research Workshop at ICML, Virtual, 19 July 2021. [Google Scholar]
- Chumakov, S.; Kovantsev, A.; Surikov, A. Generative approach to aspect-based sentiment analysis with GPT language models. Procedia Comput. Sci. 2023, 229, 284–293. [Google Scholar] [CrossRef]
- Magdaleno, D.; Montes, M.; Estrada, B.; Ochoa-Zezzatti, A. A GPT-based approach for sentiment analysis and bakery rating prediction. In Mexican International Conference on Artificial Intelligence; Springer Nature: Cham, Switzerland, 2023; pp. 61–76. [Google Scholar]
- Chen, Q. Stock movement prediction with financial news using contextualized embedding from BERT. arXiv 2021, arXiv:2107.08721. [Google Scholar]
- Fedyk, A. Front-Page News: The effect of news positioning on financial markets. J. Financ. 2024, 79, 5–33. [Google Scholar] [CrossRef]
- Fedyk, A.; Hodson, J. When can the market identify old news? J. Financ. Econ. 2023, 149, 92–113. [Google Scholar] [CrossRef]
- Krippendorff, K. Content Analysis: An Introduction to Its Methodology; Sage Publications: London, UK, 2018. [Google Scholar]
- Hutto, C.; Gilbert, E. Vader: A parsimonious rule-based model for sentiment analysis of social media text. In Proceedings of the International AAAI Conference on Web and Social Media, Ann Arbor, MI, USA, 1–4 June 2014; Volume 8, pp. 216–225. [Google Scholar]
- Nemes, L.; Kiss, A. Prediction of stock value changes using sentiment analysis of stock news headlines. J. Inf. Telecommun. 2021, 5, 375–394. [Google Scholar] [CrossRef]
- Padmanayana, V.; Bhavya, K. Stock market prediction using Twitter sentiment analysis. Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol. 2021, 7, 265–270. [Google Scholar] [CrossRef]
- Cristescu, M.P.; Nerisanu, R.A.; Mara, D.A.; Oprea, S.V. Using market news sentiment analysis for stock market prediction. Mathematics 2022, 10, 4255. [Google Scholar] [CrossRef]
- Rizinski, M.; Mishev, K.; Chitkushev, L.T.; Vodenska, I.; Trajanov, D. Using NLP transformer models to evaluate the relationship between ethical principles in finance and machine learning. In Proceedings of the 13th International Conference on Information Society and Technology (ICIST) Conference, Kopaonik, Serbia, 12–15 March 2023. [Google Scholar]
- Atak, A. Exploring the sentiment in Borsa Istanbul with deep learning. Borsa Istanb. Rev. 2023, 23, S84–S95. [Google Scholar] [CrossRef]
- Yang, H.; Li, K. Improving implicit sentiment learning via local sentiment aggregation. arXiv 2021, arXiv:2110.08604. [Google Scholar]
- Yang, H.; Zhang, C.; Liu, X.Y. PyABSA: A modularized framework for reproducible aspect-based sentiment analysis. In Proceedings of the 32nd ACM International Conference on Information and Knowledge Management, Birmingham, UK, 21–25 October 2023; pp. 5117–5122. [Google Scholar]
- Kirange, D.; Deshmukh, R.R.; Kirange, M. Aspect-based sentiment analysis SemEval-2014 Task 4. Asian J. Comput. Sci. Inf. Technol. (AJCSIT) 2014, 4, 1. [Google Scholar]
- Jiang, Q.; Chen, L.; Xu, R.; Ao, X.; Yang, M. A challenge dataset and effective models for aspect-based sentiment analysis. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), Hong Kong, China, 3–7 November 2019; pp. 6280–6285. [Google Scholar]
- Pontiki, M.; Galanis, D.; Papageorgiou, H.; Androutsopoulos, I.; Manandhar, S.; Al-Smadi, M.; Al-Ayyoub, M.; Zhao, Y.; Qin, B.; de Clercq, O.; et al. SemEval-2016 Task 5: Aspect-based sentiment analysis. In Proceedings of the Workshop on Semantic Evaluation (SemEval-2016), San Diego, CA, USA, 16–17 June 2016; Association for Computational Linguistics: Stroudsburg, PA, USA, 2016; pp. 19–30. [Google Scholar]
- Mukherjee, R.; Shetty, S.; Chattopadhyay, S.; Maji, S.; Datta, S.; Goyal, P. Reproducibility, replicability and beyond: Assessing production readiness of aspect-based sentiment analysis in the wild. In Advances in Information Retrieval, Proceedings of the 43rd European Conference on IR Research, ECIR 2021, Virtual Event, 28 March–1 April 2021; Proceedings, Part II 43; Springer International Publishing: Berlin/Heidelberg, Germany, 2021; pp. 92–106. [Google Scholar]
- Rajapaksha, S.; Ranathunga, S. Aspect detection in sportswear apparel reviews for opinion mining. In Proceedings of the 2022 Moratuwa Engineering Research Conference (MERCon), Moratuwa, Sri Lanka, 27–29 July 2022; pp. 1–6. [Google Scholar]
- Cooray, T.; Perera, G.; Kugathasan, A.; Alosius, J. Aspect-based sentiment analysis: Movie and television series reviews. In Proceedings of the International Workshop on Advanced Imaging Technology (IWAIT), Online, 5–6 January 2021; Volume 11766, pp. 615–620. [Google Scholar]
- Boitel, E.; Mohasseb, A.; Haig, E. A comparative analysis of GPT-3 and BERT models for text-based emotion recognition: Performance, efficiency, and robustness. In UK Workshop on Computational Intelligence; Springer Nature: Cham, Switzerland, 2023; pp. 567–579. [Google Scholar]
- Mughal, N.; Mujtaba, G.; Kumar, A.; Daudpota, S.M. Comparative analysis of deep neural networks and large language models for aspect-based sentiment analysis. IEEE Access 2024, 12, 60943–60959. [Google Scholar] [CrossRef]
- Mahendru, S.; Pandit, T. SecureNet: A comparative study of DeBERTa and large language models for phishing detection. arXiv 2024, arXiv:2406.06663. [Google Scholar]
- Yang, J.; Jin, H.; Tang, R.; Han, X.; Feng, Q.; Jiang, H.; Zhong, S.; Yin, B.; Hu, X. Harnessing the power of LLMs in practice: A survey on ChatGPT and beyond. ACM Trans. Knowl. Discov. Data 2024, 18, 1–32. [Google Scholar] [CrossRef]
- Liu, P.; Yuan, W.; Fu, J.; Jiang, Z.; Hayashi, H.; Neubig, G. Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing. ACM Comput. Surv. 2023, 55, 1–35. [Google Scholar] [CrossRef]
- Wei, X.; Cui, X.; Cheng, N.; Wang, X.; Zhang, X.; Huang, S.; Xie, P.; Xu, J.; Chen, Y.; Zhang, M.; et al. Zero-shot information extraction via chatting with ChatGPT. arXiv 2023, arXiv:2302.10205. [Google Scholar]
- Jurafsky, D.; Martin, J.H. Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition with Language Models, 3rd ed. Online Manuscript Released 20 August 2024. 2024. Available online: https://web.stanford.edu/~jurafsky/slp3 (accessed on 23 December 2024).
- Chicco, D.; Jurman, G. The advantages of the matthews correlation coefficient (mcc), over f1 score and accuracy in binary classification evaluation. BMC Genom. 2020, 21, 6. [Google Scholar] [CrossRef] [PubMed]
- Rospocher, M.; Eksir, S. Assessing Fine-Grained Explicitness of Song Lyrics. Information 2023, 14, 159. [Google Scholar] [CrossRef]
- Zhao, H.; Chen, H.; Yang, F.; Liu, N.; Deng, H.; Cai, H.; Wang, S.; Yin, D.; Du, M. Explainability for Large Language Models: A Survey. ACM Trans. Intell. Syst. Technol. 2024, 15, 1–38. [Google Scholar] [CrossRef]
Target | Headline | Label |
---|---|---|
Amazon | Pioneer Disciplined Growth Buys More Nike Class B, Cuts Amazon | −1 |
Amazon | Amazon to Invest Over $440 m to Boost Delivery Drivers’ Pay | 1 |
Netflix | Netflix, Tarantino Win $20 Million California Film Tax Credits | 1 |
Netflix | Netflix Shares Dip Despite Apple’s Surge in Streaming Subscribers | −1 |
Netflix | Netflix CFO Speaks at Bank of America Conference | 0 |
Nvidia | Nvidia to Partner with India’s Tata, Reliance for AI Development | 1 |
Nvidia | Neuberger Berman Guardian Buys More Walmart, Cuts Nvidia | −1 |
Alphabet | Alphabet Hits 52-Week High at $139.17 | 1 |
Target | Articles | Daily Articles |
---|---|---|
Amazon | 573 | 5.07 (4.41) |
Netflix | 298 | 3.77 (5.14) |
Nvidia | 392 | 3.70 (4.28) |
Alphabet | 213 | 3.04 (3.95) |
Total | 1476 | 15.58 (17.78) |
Model | Accuracy | Macro Precision | Macro Recall | Macro F1-Score | Weighted Precision | Weighted Recall | Weighted F1-Score |
---|---|---|---|---|---|---|---|
VADER | 0.4939 | 0.5093 | 0.4736 | 0.4753 | 0.5336 | 0.4939 | 0.5010 |
DistilFinRoBERTa | 0.5129 | 0.6182 | 0.5357 | 0.5010 | 0.6757 | 0.5129 | 0.5283 |
DeBERTa-v3 | 0.5169 | 0.6736 | 0.5833 | 0.5367 | 0.7451 | 0.5169 | 0.5324 |
DeBERTa-v3 (fine-tuned) | 0.8679 | 0.8499 | 0.8414 | 0.8448 | 0.8657 | 0.8679 | 0.8662 |
ChatGPT-3.5 | 0.7527 | 0.7716 | 0.7470 | 0.7385 | 0.8179 | 0.7527 | 0.7689 |
ChatGPT-4 | 0.8591 | 0.8395 | 0.8314 | 0.8337 | 0.8646 | 0.8591 | 0.8605 |
ChatGPT-4o | 0.8354 | 0.8213 | 0.8296 | 0.8187 | 0.8613 | 0.8354 | 0.8429 |
Gemini 1 Pro | 0.7791 | 0.7522 | 0.7293 | 0.7382 | 0.7747 | 0.7791 | 0.7743 |
Gemini 1.5 Pro | 0.8266 | 0.8161 | 0.8253 | 0.8123 | 0.8570 | 0.8266 | 0.8350 |
Gemini 1.5 Flash | 0.8313 | 0.8041 | 0.8031 | 0.8030 | 0.8276 | 0.8313 | 0.8290 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muhammad, I.; Rospocher, M. On Assessing the Performance of LLMs for Target-Level Sentiment Analysis in Financial News Headlines. Algorithms 2025, 18, 46. https://doi.org/10.3390/a18010046
Muhammad I, Rospocher M. On Assessing the Performance of LLMs for Target-Level Sentiment Analysis in Financial News Headlines. Algorithms. 2025; 18(1):46. https://doi.org/10.3390/a18010046
Chicago/Turabian StyleMuhammad, Iftikhar, and Marco Rospocher. 2025. "On Assessing the Performance of LLMs for Target-Level Sentiment Analysis in Financial News Headlines" Algorithms 18, no. 1: 46. https://doi.org/10.3390/a18010046
APA StyleMuhammad, I., & Rospocher, M. (2025). On Assessing the Performance of LLMs for Target-Level Sentiment Analysis in Financial News Headlines. Algorithms, 18(1), 46. https://doi.org/10.3390/a18010046