Algorithmic Implementation of Visually Guided Interceptive Actions: Harmonic Ratios and Stimulation Invariants
Abstract
:1. Introduction
1.1. Research Background
1.2. Research Motivations: Invariants and Their Applications in Motion Perception and VR
1.3. Research Gaps and the Contributions of the Proposed Methods
2. Preliminary
2.1. Theory of Screws
2.2. Optic Flow
2.3. Ecological Approach to Visual Perception
2.4. Integration of Theories
3. Materials and Methods
3.1. Mathematical Solutions to Terrestrial Interception Based on the Geometrical Constraints
3.2. Canonical Base of the Reference Frame for the Interception System
3.3. Harmonic Cross Ratio Model with Constant Ratios and Proportions
3.4. Cross Ratios at Infinity
4. Results
4.1. Perception and Action Coupling in Virtual Environments
4.2. Action Shaping Perception
4.3. Kinematical Possibilities of Interception: Virtual vs. Actual Directional Heading
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Cui, J.; Wang, J. High Performance CAD Conversion Processing and High Performance Display Technology for VR Virtual Application. IOP Conf. Ser. Mater. Sci. Eng. 2018, 452, 042134. [Google Scholar] [CrossRef]
- Hasan, S.; Higginbotham, D.; Saleh, E.S.; McCarty, S.; Miller, A.K. Virtual and Augmented Reality in Spine Surgery: An Era of Immersive Healthcare. Cureus 2023, 15, e43964. [Google Scholar] [CrossRef] [PubMed]
- Anifowose, H.; Yan, W.; Dixit, M. BIM LOD+ Virtual Reality--Using Game Engine for Visualization in Architectural & Construction Education. arXiv 2022, arXiv:2201.09954. [Google Scholar]
- Bohil, C.J.; Alicea, B.; Biocca, F.A. Virtual reality in neuroscience research and therapy. Nat. Rev. Neurosci. 2011, 12, 752–762. [Google Scholar] [CrossRef] [PubMed]
- Reed, E.S. Encountering the World: Toward an Ecological Psychology; Oxford University Press: Oxford, UK, 1996. [Google Scholar]
- Gibson, J.J. The Ecological Approach to Visual Perception; Houghton Mifflin: Boston, MA, USA, 1979. [Google Scholar]
- Ball, R.S. A Treatise on the Theory of Screws; Cambridge University Press: Cambridge, MA, USA, 1900. [Google Scholar]
- Preechayasomboon, P.; Israr, A.; Samad, M. Chasm: A screw based expressive compact haptic actuator. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, Honolulu, HI, USA, 25–30 April 2020. [Google Scholar]
- Phillips, J. Freedom in Machinery: Volume 1, Introducing Screw Theory; Cambridge University Press: Cambridge, MA, USA, 1984. [Google Scholar]
- Jessop, C.M. Treatise on the Line Complex; American Mathematical Society: Providence, RI, USA, 1903. [Google Scholar]
- Gibson, J.J.; Crooks, L.E. A Theoretical Field-Analysis of Automobile-Driving. Am. J. Psychol. 1938, 51, 453. [Google Scholar] [CrossRef]
- Flach, J.M.; Holden, J.G. The Reality of Experience: Gibson’s Way. Presence Teleoperators Virtual Environ. 1998, 7, 90–95. [Google Scholar] [CrossRef]
- Warren, W.H.; Kay, B.A.; Zosh, W.D.; Duchon, A.P.; Sahuc, S. Optic flow is used to control human walking. Nat. Neurosci. 2001, 4, 213–216. [Google Scholar] [CrossRef] [PubMed]
- Gibson, J.J.; Gibson, E.J. Continuous perspective transformations and the perception of rigid motion. J. Exp. Psychol. 1957, 54, 129–138. [Google Scholar] [CrossRef]
- Garrett, B.; Taverner, T.; Gromala, D.; Tao, G.; Cordingley, E.; Sun, C. Virtual Reality Clinical Research: Promises and Challenges. JMIR Serious Games 2018, 6, e10839. [Google Scholar] [CrossRef]
- Davidson, J.; Hunt, K. Robots and Screw Theory: Applications of Kinematics and Statics to Robotics; Oxford University Press: Oxford, UK, 2004. [Google Scholar]
- Hunt, K.H. Kinematic Geometry of Mechanism; Clarendon Press: Oxford, UK, 1990. [Google Scholar]
- Wong, Y.; Kim, W.; Ying, N. Passive motion characteristics of the talocrural and the subtalar joint by dual Euler angles. J. Biomech. 2005, 38, 2480–2485. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.; Kopper, R. Real-Time Viewport-Aware Optical Flow Estimation in 360-degree Videos for Visually-Induced Motion Sickness Mitigation. In Proceedings of the 25th Symposium on Virtual and Augmented Reality, Rio Grande, Brazil, 6–9 November 2023. [Google Scholar]
- Raja, V.; Calvo, P. Augmented reality: An ecological blend. Cogn. Syst. Res. 2017, 42, 58–72. [Google Scholar] [CrossRef]
- Rolla, G.; Vasconcelos, G.; Figueiredo, N.M. Virtual Reality, Embodiment, and Allusion: An Ecological-Enactive Approach. Philos. Technol. 2022, 35, 95. [Google Scholar] [CrossRef]
- Lenoir, M.; Musch, E.; Janssens, M.; Thiery, E.; Uyttenhove, J. Intercepting Moving Objects During Self-Motion. J. Mot. Behav. 1999, 31, 55–67. [Google Scholar] [CrossRef] [PubMed]
- Lenoir, M.; Savelsbergh, G.J.P.; Musch, E.; Thiery, E.; Uyttenhove, J.; Janssens, M. Intercepting Moving Objects during Self-Motion: Effects of Environmental Changes. Res. Q. Exerc. Sport 1999, 70, 349–360. [Google Scholar] [CrossRef] [PubMed]
- Diaz, G.J.; Phillips, F.; Fajen, B.R. Intercepting moving targets: A little foresight helps a lot. Exp. Brain Res. 2009, 195, 345–360. [Google Scholar] [CrossRef] [PubMed]
- Fajen, B.R.; Warren, W.H. Visual Guidance of Intercepting a Moving Target on Foot. Perception 2004, 33, 689–715. [Google Scholar] [CrossRef] [PubMed]
- Fajen, B.R.; Warren, W.H. Behavioral dynamics of intercepting a moving target. Exp. Brain Res. 2007, 180, 303–319. [Google Scholar] [CrossRef] [PubMed]
- Araújo, D.; Davids, K.; Hristovski, R. The ecological dynamics of decision making in sport. Psychol. Sport Exerc. 2006, 7, 653–676. [Google Scholar] [CrossRef]
- Chapman, S. Catching a Baseball. Am. J. Phys. 1968, 36, 868–870. [Google Scholar] [CrossRef]
- Courant, R.; Robbins, H.; Stewart, I. What Is Mathematics?: An Elementary Approach to Ideas and Methods, 2nd ed.; Oxford University Press: New York, NY, USA, 1996; 566p. [Google Scholar]
- Zhao, H.; Warren, W.H. Intercepting a moving target: On-line or model-based control? J. Vis. 2017, 17, 12. [Google Scholar] [CrossRef] [PubMed]
- Stepp, N.; Turvey, M.T. On strong anticipation. Cogn. Syst. Res. 2010, 11, 148–164. [Google Scholar] [CrossRef] [PubMed]
- Wilson, M. Physics Avoidance: And Other Essays in Conceptual Strategy; Oxford University Press: Oxford, UK, 2017. [Google Scholar]
- Lange, M. The principle of virtual work, counterfactuals, and the avoidance of physics. Eur. J. Philos. Sci. 2019, 9, 33. [Google Scholar] [CrossRef]
- Gibson, J.J. The Perception of the Visual World; Greenwood Press: Westport, CT, USA, 1974; Volume xii, 235p. [Google Scholar]
- Blake, R. Gibson’s inspired but latent prelude to visual motion perception. Psychol. Rev. 1994, 101, 324–328. [Google Scholar] [CrossRef] [PubMed]
- Warren, W.H., Jr. Visually Controlled Locomotion: 40 years Later. Ecol. Psychol. 1998, 10, 177–219. [Google Scholar] [PubMed]
- Turvey, M.; Shaw, R.; Reed, E.; Mace, W. Ecological laws of perceiving and acting: In reply to Fodor and Pylyshyn (1981). Cognition 1981, 9, 237–304. [Google Scholar] [CrossRef] [PubMed]
- Kelso, J.A.S. Dynamic Patterns: The Self-Organization of Brain and Behavior; MIT Press: Cambridge, MA, USA, 1995. [Google Scholar]
- Kim, W.; Araujo, D.; Kohles, S.S.; Kim, S.-G.; Sanchez, H.H.A. Affordance-Based Surgical Design Methods Considering Biomechanical Artifacts. Ecol. Psychol. 2020, 33, 57–71. [Google Scholar] [CrossRef] [PubMed]
- Seifert, L.; Komar, J.; Araújo, D.; Davids, K. Neurobiological degeneracy: A key property for functional adaptations of perception and action to constraints. Neurosci. Biobehav. Rev. 2016, 69, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Thelen, E. Motor development. A new synthesis. Am. Psychol. 1995, 50, 79–95. [Google Scholar] [CrossRef] [PubMed]
- Shaw, R.E.; Turvey, M. Ecological foundations of cognition. II: Degrees of freedom and conserved quantities in animal-environment systems. J. Conscious. Stud. 1999, 6, 111–124. [Google Scholar]
- Shaw, R.E.; Kinsella-Shaw, J.M.; Mace, W.M. Affordance types and affordance tokens: Are Gibson’s affordances trustworthy? Ecol. Psychol. 2019, 31, 49–75. [Google Scholar] [CrossRef]
- Henrici, O. The Theory of Screws1. Nature 1890, 42, 127–132. [Google Scholar] [CrossRef]
- Atchison, W.F.; Semple, J.G.; Kneebone, G.T. Algebraic Projective Geometry. Am. Math. Mon. 1953, 60, 343. [Google Scholar] [CrossRef]
- Lanczos, C. The Variational Principles of Mechanics; Courier Corporation: North Chelmsford, MA, USA, 2012. [Google Scholar]
- Courant, R.; Robbins, H. What Is Mathematics? An Elementary Approach to Ideas and Methods; Oxford University Press: London, UK; New York, NY, USA, 1941; 3p. l., v–xix; 521p. [Google Scholar]
- Emmer, M. The Visual Mind II; MIT Press: Cambridge, MA, USA, 2005. [Google Scholar]
- Simpson, W.A. The cross-ratio and the perception of motion and structure. In Proceedings of the ACM SIGGRAPH/SIGART Interdisciplinary Workshop on Motion: Representation and Perception, Toronto, ON, Canada, 4–6 April 1986. [Google Scholar]
- Griffis, M.; Rico, J.M. The nut in screw theory. J. Robot. Syst. 2003, 20, 437–476. [Google Scholar] [CrossRef]
- Olberg, R.M.; Worthington, A.H.; Venator, K.R. Prey pursuit and interception in dragonflies. J. Comp. Physiol. A 2000, 186, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Gibson, J.J. The Senses Considered as Perceptual Systems; Houghton: Boston, MA, USA, 1966. [Google Scholar]
- Kelso, J.A.; Tuller, B. Converging evidence in support of common dynamical principles for speech and movement coordination. Am. J. Physiol. Integr. Comp. Physiol. 1984, 246, R928–R935. [Google Scholar] [CrossRef] [PubMed]
- Turvey, M.T. Ecological Foundations of Cognition: Invariants of Perception and Action, in Cognition: Conceptual and Methodological Issues; American Psychological Association: Washington, DC, USA, 1992; pp. 85–117. [Google Scholar]
- Gibson, J.J. Visually controlled locomotion and visual orientation in animals. Br. J. Psychol. 1958, 49, 182–194. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, N.A. The Co-Ordination and Regulation of Movements; Pergamon Press: Oxford, UK, 1967. [Google Scholar]
- Casanova, R.; Ceyte, G.; Bootsma, R.J. Visual guidance of locomotor interception is based on nulling changes in target bearing (not egocentric target direction nor target-heading angle). Hum. Mov. Sci. 2022, 82, 102929. [Google Scholar] [CrossRef]
- Rheingold, H. Virtual Reality: Exploring the Brave New Technologies; Simon & Schuster Adult Publishing Group: New York, NY, USA, 1991. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, W.; Araujo, D.; Choi, M.; Vette, A.; Ortiz, E. Algorithmic Implementation of Visually Guided Interceptive Actions: Harmonic Ratios and Stimulation Invariants. Algorithms 2024, 17, 277. https://doi.org/10.3390/a17070277
Kim W, Araujo D, Choi M, Vette A, Ortiz E. Algorithmic Implementation of Visually Guided Interceptive Actions: Harmonic Ratios and Stimulation Invariants. Algorithms. 2024; 17(7):277. https://doi.org/10.3390/a17070277
Chicago/Turabian StyleKim, Wangdo, Duarte Araujo, MooYoung Choi, Albert Vette, and Eunice Ortiz. 2024. "Algorithmic Implementation of Visually Guided Interceptive Actions: Harmonic Ratios and Stimulation Invariants" Algorithms 17, no. 7: 277. https://doi.org/10.3390/a17070277
APA StyleKim, W., Araujo, D., Choi, M., Vette, A., & Ortiz, E. (2024). Algorithmic Implementation of Visually Guided Interceptive Actions: Harmonic Ratios and Stimulation Invariants. Algorithms, 17(7), 277. https://doi.org/10.3390/a17070277