Why Reinforcement Learning?
Conflicts of Interest
List of Contributions
- Souza, G.K.B.; Santos, S.O.S.; Ottoni, A.L.C.; Oliveira, M.S.; Oliveira, D.C.R.; Nepomuceno, E.G. Transfer Reinforcement Learning for Combinatorial Optimization Problems. Algorithms 2024, 17, 87. https://doi.org/10.3390/a17020087.
- Gao, D.; Wang, S.; Yang, Y.; Zhang, H.; Chen, H.; Mei, X.; Chen, S.; Qiu, J. An Intelligent Control Method for Servo Motor Based on Reinforcement Learning. Algorithms 2024, 17, 14. https://doi.org/10.3390/a17010014.
- Clarke, R.; Fletcher, L.; East, S.; Richardson, T. Reinforcement Learning Derived High-Alpha Aerobatic Manoeuvres for Fixed Wing Operation in Confined Spaces. Algorithms 2023, 16, 384. https://doi.org/10.3390/a16080384.
- Engelhardt, R.C.; Oedingen, M.; Lange, M.; Wiskott, L.; Konen, W. Iterative Oblique Decision Trees Deliver Explainable RL Models. Algorithms 2023, 16, 282. https://doi.org/10.3390/a16060282.
- Deák, S.; Levine, P.; Pearlman, J.; Yang, B. Reinforcement Learning in a New Keynesian Model. Algorithms 2023, 16, 280. https://doi.org/10.3390/a16060280.
- Ruiz-Serra, J.; Harré, M.S. Inverse Reinforcement Learning as the Algorithmic Basis for Theory of Mind: Current Methods and Open Problems. Algorithms 2023, 16, 68. https://doi.org/10.3390/a16020068.
References
- Gronauer, S.; Diepold, K. Multi-agent deep reinforcement learning: A survey. Artif. Intell. Rev. 2022, 55, 895–943. [Google Scholar] [CrossRef]
- Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018. [Google Scholar]
- Kaelbling, L.P.; Littman, M.L.; Moore, A.W. Reinforcement Learning: A Survey. J. Artif. Intell. Res. 1996, 4, 237–285. [Google Scholar] [CrossRef]
- Shakya, A.K.; Pillai, G.; Chakrabarty, S. Reinforcement learning algorithms: A brief survey. Expert Syst. Appl. 2023, 231, 120495. [Google Scholar] [CrossRef]
- Milani, S.; Topin, N.; Veloso, M.; Fang, F. Explainable Reinforcement Learning: A Survey and Comparative Review. ACM Comput. Surv. 2024, 56, 1–36. [Google Scholar] [CrossRef]
- Song, Y.; Suganthan, P.N.; Pedrycz, W.; Ou, J.; He, Y.; Chen, Y.; Wu, Y. Ensemble reinforcement learning: A survey. Appl. Soft Comput. 2023, 149, 110975. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aydin, M.E.; Durgut, R.; Rakib, A. Why Reinforcement Learning? Algorithms 2024, 17, 269. https://doi.org/10.3390/a17060269
Aydin ME, Durgut R, Rakib A. Why Reinforcement Learning? Algorithms. 2024; 17(6):269. https://doi.org/10.3390/a17060269
Chicago/Turabian StyleAydin, Mehmet Emin, Rafet Durgut, and Abdur Rakib. 2024. "Why Reinforcement Learning?" Algorithms 17, no. 6: 269. https://doi.org/10.3390/a17060269
APA StyleAydin, M. E., Durgut, R., & Rakib, A. (2024). Why Reinforcement Learning? Algorithms, 17(6), 269. https://doi.org/10.3390/a17060269