LGNMNet-RF: Micro-Expression Detection Using Motion History Images
Abstract
:1. Introduction
- This study proposes MHI for the ME and MaE detection using LGNMNet-RF architecture.
- This study implements pseudo-labelling with temporal extensions to generate more accurate labels for deep learning training according to the characteristics of the MHI features.
- This study introduces an LGNMNet-RF architecture that integrates MobileNet V3 with the MagFace loss function and utilises a Random Forest classifier to enhance interval detection accuracy and mitigate noise.
2. Related Works
3. Methodology
3.1. Pre-Processing
3.2. Pseudo-Labelling
3.3. Post-Processing
4. Experiments
4.1. Datasets
4.2. Evaluation Metrics
4.3. Experiment Settings
5. Results and Discussion
5.1. Experiment Results
5.2. Ablation Study
5.2.1. Labelling
5.2.2. Machine Learning Classifiers
5.2.3. Network Architecture’s Backbone
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tzeplaeff, L.; Wilfling, S.; Requardt, M.V.; Herdick, M. Current state and future directions in the therapy of ALS. Cells 2023, 12, 1523. [Google Scholar] [CrossRef] [PubMed]
- Yap, C.H.; Yap, M.H.; Davison, A.; Kendrick, C.; Li, J.; Wang, S.J.; Cunningham, R. 3D-CNN for facial micro-and macro-expression spotting on long video sequences using temporal oriented reference frame. In Proceedings of the 30th ACM International Conference on Multimedia, Lisbon, Portugal, 10–14 October 2022; pp. 7016–7020. [Google Scholar]
- Liong, G.B.; Liong, S.T.; See, J.; Chan, C.S. MTSN: A Multi-Temporal Stream Network for Spotting Facial Macro- and Micro-Expression with Hard and Soft Pseudo-labels. In Proceedings of the the 2nd Workshop on Facial Micro-Expression: Advanced Techniques for Multi-Modal Facial Expression Analysis, Lisboa, Portugal, 14 October 2022; pp. 3–10. [Google Scholar] [CrossRef]
- Leng, W.; Zhao, S.; Zhang, Y.; Liu, S.; Mao, X.; Wang, H.; Xu, T.; Chen, E. ABPN: Apex and Boundary Perception Network for Micro- and Macro-Expression Spotting. In Proceedings of the the 30th ACM International Conference on Multimedia, Lisbon, Portugal, 10–14 October 2022; pp. 7160–7164. [Google Scholar] [CrossRef]
- Bobick, A.F.; Davis, J.W. The recognition of human movement using temporal template. IEEE Trans. Pattern Anal. Mach. Intell. 2001, 23, 257–267. [Google Scholar] [CrossRef]
- Gu, Q.L.; Yang, S.; Yu, T. Lite general network and MagFace CNN for micro-expression spotting in long videos. Multimed. Syst. 2023, 29, 3521–3530. [Google Scholar] [CrossRef]
- Meng, Q.; Zhao, S.; Huang, Z.; Zhou, F. Magface: A universal representation for face recognition and quality assessment. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 14225–14234. [Google Scholar]
- Shreve, M.; Brizzi, J.; Fefilatyev, S.; Luguev, T.; Goldgof, D.; Sarkar, S. Automatic expression spotting in videos. Image Vis. Comput. 2014, 32, 476–486. [Google Scholar] [CrossRef]
- Moilanen, A.; Zhao, G.; Pietikäinen, M. Spotting rapid facial movements from videos using appearance-based feature difference analysis. In Proceedings of the 22nd International Conference on Pattern Recognition, Stockholm, Sweden, 24–28 August 2014; pp. 1722–1727. [Google Scholar] [CrossRef]
- Davison, A.K.; Yap, M.H.; Lansley, C. Micro-Facial Movement Detection Using Individualised Baselines and Histogram-Based Descriptors. In Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, Hong Kong, China, 9–12 October 2015. [Google Scholar] [CrossRef]
- Esmaeili, V.; Shahdi, S.O. Automatic micro-expression apex spotting using Cubic-LBP. Multimed. Tools Appl. 2020, 79, 20221–20239. [Google Scholar] [CrossRef]
- Zhang, L.W.; Li, J.; Wang, S.J.; Duan, X.H.; Yan, W.J.; Xie, H.Y.; Huang, S.C. Spatio-temporal fusion for Macro- and Micro-expression Spotting in Long Video Sequences. In Proceedings of the 15th IEEE International Conference on Automatic Face and Gesture Recognition (FG2020), Buenos Aires, Argentina, 16–20 November 2020; pp. 245–252. [Google Scholar] [CrossRef]
- Borza, D.; Itu, R.; Danescu, R. Real-time micro-expression detection from high speed cameras. In Proceedings of the 2017 13th IEEE International Conference on Intelligent Computer Communication and Processing (ICCP), Cluj-Napoca, Romania, 7–9 September 2017; pp. 357–361. [Google Scholar]
- Wang, S.J.; Wu, S.; Qian, X.; Li, J.; Fu, X. A main directional maximal difference analysis for spotting facial movements from long-term videos. Neurocomputing 2017, 230, 382–389. [Google Scholar] [CrossRef]
- Yin, S.; Wu, S.; Xu, T.; Liu, S.; Zhao, S.; Chen, E. AU-aware graph convolutional network for Macroand Micro-expression spotting. In Proceedings of the 2023 IEEE International Conference on Multimedia and Expo (ICME), Brisbane, Australia, 10–14 July 2023; pp. 228–233. [Google Scholar]
- Xie, Z.; Cheng, S. Micro-Expression Spotting Based on a Short-Duration Prior and Multi-Stage Feature Extraction. Electronics 2023, 12, 434. [Google Scholar] [CrossRef]
- He, E.; Chen, Q.; Zhong, Q. SL-Swin: A Transformer-Based Deep Learning Approach for Macro- and Micro-Expression Spotting on Small-Size Expression Datasets. Electronics 2023, 12, 2656. [Google Scholar] [CrossRef]
- Deng, J.; Guo, J.; Ververas, E.; Kotsia, I.; Zafeiriou, S. Retinaface: Single-shot multi-level face localisation in the wild. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 5203–5212. [Google Scholar]
- Winnemöller, H.; Kyprianidis, J.E.; Olsen, S.C. XDoG: An eXtended difference-of-Gaussians compendium including advanced image stylization. Comput. Graph. 2012, 36, 740–753. [Google Scholar] [CrossRef]
- Qu, F.; Wang, S.J.; Yan, W.J.; Fu, X. CAS(ME)2: A Database of Spontaneous Macro-expressions and Micro-expressions. In Human-Computer Interaction; Springer: Cham, Switzerland, 2016; pp. 48–59. [Google Scholar] [CrossRef]
- Yap, C.H.; Kendrick, C.; Yap, M.H. SAMM Long Videos: A Spontaneous Facial Micro- and Macro-Expressions Dataset. In Proceedings of the 15th IEEE International Conference on Automatic Face and Gesture Recognition (FG2020), lBuenos Aires, Argentina, 16–20 November 2020; pp. 48–59. [Google Scholar] [CrossRef]
- Yan, W.J.; Wu, Q.; Liu, Y.J.; Wang, S.J.; Fu, X. CASME database: A dataset of spontaneous micro-expressions collected from neutralised faces. In Proceedings of the IEEE International Conference on Automatic Face and Gesture Recognition (FG), Shanghai, China, 22–26 April 2013; pp. 1–7. [Google Scholar] [CrossRef]
- Yan, W.J.; Li, X.; Wang, S.J.; Zhao, G.; Liu, Y.J.; Chen, Y.H.; Fu, X. CASME II: An improved spontaneous micro-expression database and the baseline evaluation. PLoS ONE 2014, 9, e86041. [Google Scholar] [CrossRef] [PubMed]
- Tran, T.K.; Vo, Q.N.; Hong, X.; Li, X.; Zhao, G. Micro-expression spotting: A new benchmark. Neurocomputing 2021, 443, 356–368. [Google Scholar] [CrossRef]
- Davison, A.K.; Lansley, C.; Costen, N.; Tan, K.; Yap, M.H. SAMM: A spontaneous micro-facial movement dataset. IEEE Trans. Affect. Comput. 2016, 9, 116–129. [Google Scholar] [CrossRef]
- He, Y.; Wang, S.J.; Li, J.; Yap, M.H. Spotting Macro-and Micro-expression Intervals in Long Video Sequences. In Proceedings of the 15th IEEE International Conference on Automatic Face and Gesture Recognition (FG2020), Buenos Aires, Argentina, 16–20 November 2020; pp. 742–748. [Google Scholar] [CrossRef]
- Jingting, L.; Wang, S.J.; Yap, M.H.; See, J.; Hong, X.; Li, X. MEGC2020-the third facial micro-expression grand challenge. In Proceedings of the 2020 15th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2020), Buenos Aires, Argentina, 16–20 November 2020; pp. 777–780. [Google Scholar]
- Pan, H.; Xie, L.; Wang, Z. Local Bilinear Convolutional Neural Network for Spotting Macro- and Micro-expression Intervals in Long Video Sequences. In Proceedings of the 15th IEEE International Conference on Automatic Face and Gesture Recognition (FG2020), Buenos Aires, Argentina, 16–20 November 2020; pp. 343–347. [Google Scholar] [CrossRef]
- Liong, G.B.; See, J.; Wong, L.K. Shallow optical flow three-stream CNN for macro-and micro-expression spotting from long videos. In Proceedings of the 2021 IEEE International Conference on Image Processing (ICIP), Anchorage, AK, USA, 19–22 September 2021; pp. 2643–2647. [Google Scholar]
- Cortes, C. Support-Vector Networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Tikhonov, A.N. On the solution of ill-posed problems and the method of regularization. Dokl. Akad. Nauk SSSR 1963, 151, 501–504. [Google Scholar]
- Cover, T.; Hart, P. Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 1967, 13, 21–27. [Google Scholar] [CrossRef]
- Ma, N.; Zhang, X.; Zheng, H.T.; Sun, J. ShuffleNet v2: Practical guidelines for efficient cnn architecture design. In Proceedings of the European conference on computer vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 116–131. [Google Scholar]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. MobileNetV2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4510–4520. [Google Scholar]
- Liu, Z.; Mao, H.; Wu, C.Y.; Feichtenhofer, C.; Darrell, T.; Xie, S. A ConvNet for the 2020s. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 11976–11986. [Google Scholar]
- Tu, Z.; Talebi, H.; Zhang, H.; Yang, F.; Milanfar, P.; Bovik, A.; Li, Y. MaxViT: Multi-axis vision transformer. In European Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2022; pp. 459–479. [Google Scholar]
- Koonce, B.; Koonce, B. MobileNetV3. In Convolutional Neural Networks with Swift for Tensorflow: Image Recognition and Dataset Categorization; Apress: Berkeley, CA, USA, 2021; pp. 125–144. [Google Scholar]
Datasets | CASME [22] | CASMEII [23] | CAS(ME)2 [20] | SAMM-LV [21] | SMIC-E [24] |
---|---|---|---|---|---|
Year | 2013 | 2014 | 2016 | 2020 | 2021 |
# of Video | 195 | 247 | 97 | 147 | 162 |
# of Subjects | 19 | 26 | 22 | 30 | 16 |
# of MaE | — | — | 300 | 343 | — |
# of ME | 195 | 247 | 57 | 159 | 166 |
Resolution [pixel] | 640 × 680 | 640 × 480 | 640 × 480 | 2040 × 1088 | 640 × 480 |
frame rate [fps] | 60 | 200 | 30 | 200 | 200 |
Methods | Input | CAS(ME)2 | SAMM-LV | ||||
---|---|---|---|---|---|---|---|
MaE | ME | Overall | MaE | ME | Overall | ||
He et al. [26] | MDMD | 0.1196 | 0.0082 | 0.0376 | 0.0629 | 0.0364 | 0.0445 |
Gan et al. [27] | OS | 0.1436 | 0.0098 | 0.0448 | — | — | — |
Pan et al. [28] | RGB Images | — | — | 0.0595 | — | — | 0.0813 |
Zhang et al. [12] | OF | 0.2131 | 0.0547 | 0.1403 | 0.1331 | 0.0725 | 0.0999 |
Liong et al. [29] | OF + OS | 0.2410 | 0.1173 | 0.2022 | 0.2169 | 0.1520 | 0.1881 |
Yap et al. [2] | LCN | 0.2145 | 0.0714 | 0.1675 | 0.1595 | 0.0466 | 0.1084 |
Liong et al. [3] | OF + OS | 0.4104 | 0.0808 | 0.3620 | 0.3459 | 0.0878 | 0.2867 |
He et al. [17] | OF + OS | 0.2236 | 0.0879 | 0.1834 | 0.1675 | 0.1044 | 0.1357 |
Gu et al. [6] | OF | 0.4018 | 0.2474 | 0.3838 | 0.3257 | 0.2555 | 0.3211 |
LGNMNet-RF (Ours) | MHI | 0.3400 | 0.3019 | 0.3594 | 0.4444 | 0.3604 | 0.4118 |
Input | k | Classifier | TsEXT [s] | TfEXT [frames] | TP | FP | FN | F1 |
---|---|---|---|---|---|---|---|---|
OF | 6 | Softmax | 0.000 | 0 | 12 | 88 | 45 | 0.1529 |
Random Forest | 0.000 | 0 | 17 | 82 | 40 | 0.2179 | ||
MHI | Softmax | 0.000 | 0 | 4 | 17 | 53 | 0.1026 | |
0.033 | 1 | 3 | 9 | 54 | 0.0870 | |||
0.067 | 2 | 9 | 37 | 48 | 0.1784 | |||
0.100 | 3 | 11 | 49 | 46 | 0.1880 | |||
0.133 | 4 | 7 | 74 | 50 | 0.1014 | |||
0.167 | 5 | 9 | 74 | 48 | 0.1374 | |||
0.200 | 6 | 9 | 35 | 48 | 0.1782 | |||
Random Forest | 0.000 | 0 | 14 | 36 | 43 | 0.2617 | ||
0.033 | 1 | 16 | 118 | 41 | 0.1675 | |||
0.067 | 2 | 15 | 64 | 42 | 0.2206 | |||
0.100 | 3 | 11 | 40 | 46 | 0.2036 | |||
0.133 | 4 | 15 | 37 | 42 | 0.2752 | |||
0.167 | 5 | 16 | 33 | 41 | 0.3019 | |||
0.200 | 6 | 15 | 52 | 42 | 0.2419 | |||
OF | 18 | Softmax | 0.000 | 0 | 74 | 284 | 226 | 0.2249 |
Random Forest | 0.000 | 0 | 72 | 278 | 228 | 0.2215 | ||
MHI | Softmax | 0.000 | 0 | 112 | 152 | 188 | 0.3972 | |
0.100 | 3 | 111 | 158 | 189 | 0.3902 | |||
0.200 | 6 | 119 | 167 | 181 | 0.4061 | |||
0.300 | 9 | 107 | 127 | 193 | 0.4007 | |||
0.400 | 12 | 105 | 90 | 195 | 0.4242 | |||
0.500 | 15 | 111 | 158 | 189 | 0.3902 | |||
0.600 | 18 | 108 | 135 | 192 | 0.3978 | |||
Random Forest | 0.000 | 0 | 84 | 160 | 216 | 0.3088 | ||
0.100 | 3 | 102 | 145 | 198 | 0.3400 | |||
0.200 | 6 | 97 | 285 | 203 | 0.2845 | |||
0.300 | 9 | 71 | 218 | 229 | 0.2367 | |||
0.400 | 12 | 91 | 159 | 209 | 0.3309 | |||
0.500 | 15 | 91 | 180 | 207 | 0.3206 | |||
0.600 | 18 | 95 | 178 | 205 | 0.3316 |
Input | k | Classifier | TsEXT [s] | TfEXT [frames] | TP | FP | FN | F1 |
---|---|---|---|---|---|---|---|---|
OF | 37 | Softmax | 0.000 | 0 | 76 | 221 | 83 | 0.3333 |
Random Forest | 0.000 | 0 | 68 | 127 | 91 | 0.3842 | ||
MHI | Softmax | 0.000 | 0 | 54 | 250 | 105 | 0.2333 | |
0.035 | 7 | 50 | 141 | 109 | 0.2841 | |||
0.065 | 13 | 56 | 212 | 103 | 0.2623 | |||
0.100 | 20 | 45 | 165 | 114 | 0.2439 | |||
0.130 | 26 | 51 | 151 | 108 | 0.2825 | |||
0.165 | 33 | 49 | 153 | 110 | 0.2715 | |||
0.185 | 37 | 54 | 189 | 105 | 0.2687 | |||
Random Forest | 0.000 | 0 | 68 | 170 | 91 | 0.3426 | ||
0.035 | 7 | 59 | 155 | 100 | 0.3164 | |||
0.065 | 13 | 63 | 177 | 96 | 0.3158 | |||
0.100 | 20 | 61 | 157 | 98 | 0.3236 | |||
0.130 | 26 | 59 | 126 | 100 | 0.3430 | |||
0.165 | 33 | 71 | 164 | 88 | 0.3604 | |||
0.185 | 37 | 59 | 191 | 100 | 0.2885 | |||
OF | 174 | Softmax | 0.000 | 0 | 138 | 99 | 205 | 0.4759 |
Random Forest | 0.000 | 0 | 140 | 103 | 203 | 0.4778 | ||
MHI | Softmax | 0.000 | 0 | 127 | 118 | 216 | 0.4320 | |
0.100 | 20 | 121 | 119 | 222 | 0.4151 | |||
0.200 | 40 | 120 | 122 | 223 | 0.4130 | |||
0.300 | 60 | 120 | 128 | 223 | 0.4061 | |||
0.400 | 80 | 138 | 128 | 213 | 0.4326 | |||
0.500 | 100 | 124 | 117 | 219 | 0.4247 | |||
0.600 | 120 | 123 | 120 | 220 | 0.4198 | |||
Random Forest | 0.000 | 0 | 123 | 126 | 220 | 0.4155 | ||
0.100 | 20 | 135 | 146 | 208 | 0.4327 | |||
0.200 | 40 | 122 | 127 | 221 | 0.4122 | |||
0.300 | 60 | 115 | 143 | 228 | 0.3827 | |||
0.400 | 80 | 124 | 157 | 219 | 0.3974 | |||
0.500 | 100 | 128 | 158 | 215 | 0.4122 | |||
0.600 | 120 | 138 | 140 | 205 | 0.4444 |
Input Image | Classifier | TP | FP | FN | F1 (ME) |
---|---|---|---|---|---|
MHI | Softmax | 9 | 74 | 48 | 0.1374 |
Random Forest | 16 | 33 | 41 | 0.3019 | |
SVC | 15 | 46 | 42 | 0.2542 | |
Linear Regression | 9 | 42 | 48 | 0.1667 | |
kNN | 9 | 35 | 48 | 0.1782 |
Network Backbone | TP | FP | FN | F1-Score (ME) |
---|---|---|---|---|
ShuffleNet V2 | 4 | 20 | 53 | 0.0988 |
MobileNet V2 | 9 | 54 | 48 | 0.1500 |
Convnet | 5 | 29 | 52 | 0.1099 |
MaxVit | 2 | 19 | 55 | 0.0513 |
MobileNet V3 | 54 | 250 | 105 | 0.2333 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teng, M.K.K.; Zhang, H.; Saitoh, T. LGNMNet-RF: Micro-Expression Detection Using Motion History Images. Algorithms 2024, 17, 491. https://doi.org/10.3390/a17110491
Teng MKK, Zhang H, Saitoh T. LGNMNet-RF: Micro-Expression Detection Using Motion History Images. Algorithms. 2024; 17(11):491. https://doi.org/10.3390/a17110491
Chicago/Turabian StyleTeng, Matthew Kit Khinn, Haibo Zhang, and Takeshi Saitoh. 2024. "LGNMNet-RF: Micro-Expression Detection Using Motion History Images" Algorithms 17, no. 11: 491. https://doi.org/10.3390/a17110491
APA StyleTeng, M. K. K., Zhang, H., & Saitoh, T. (2024). LGNMNet-RF: Micro-Expression Detection Using Motion History Images. Algorithms, 17(11), 491. https://doi.org/10.3390/a17110491