Deep Learning Approach for Arm Fracture Detection Based on an Improved YOLOv8 Algorithm
Abstract
:1. Introduction
2. Model Architecture
3. Methods
3.1. Dataset
3.2. Modified Model Architecture
3.2.1. Channel Attention Mechanism
3.2.2. Spatial Attention Mechanism
3.2.3. Hybrid-Attention Module
4. Results and Discussion
4.1. Evaluation Metrics
4.2. Ablation Study and Quantitative Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chung, K.C.; Spilson, S.V. The Frequency and Epidemiology of Hand and Forearm Fractures in the United States. J. Hand Surg. Am. Ed. 2001, 26, 908–915. [Google Scholar] [CrossRef]
- Cooper, C.; Dennison, E.M.; Leufkens, H.G.M.; Bishop, N.; van Staa, T.P. Epidemiology of Childhood Fractures in Britain: A Study Using the General Practice Research Database. J. Bone Miner. Res. 2004, 19, 1976–1981. [Google Scholar] [CrossRef]
- Ellis, E. Management of Fractures Through the Angle of the Mandible. Oral Maxillofac. Surg. Clin. N. Am. 2009, 21, 163–174. [Google Scholar] [CrossRef]
- Umans, H.R.; Kaye, J.J. Longitudinal Stress Fractures of the Tibia: Diagnosis by Magnetic Resonance Imaging. Skelet. Radiol. 1996, 25, 319–324. [Google Scholar] [CrossRef]
- Xiong, C.; Xu, X.; Zhang, H.; Zeng, B. An Analysis of Clinical Values of MRI, CT and X-Ray in Differentiating Benign and Malignant Bone Metastases. Am. J. Transl. Res. 2021, 13, 7335. [Google Scholar]
- Feydy, A.; Drapé, J.; Beret, E.; Sarazin, L.; Pessis, E.; Minoui, A.; Chevrot, A. Longitudinal Stress Fractures of the Tibia: Comparative Study of CT and MR Imaging. Eur. Radiol. 1998, 8, 598–602. [Google Scholar] [CrossRef]
- Hallas, P.; Ellingsen, T. Errors in Fracture Diagnoses in the Emergency Department—Characteristics of Patients and Diurnal Variation. BMC Emerg. Med. 2006, 6, 4. [Google Scholar] [CrossRef]
- Er, E.; Kara, P.H.; Oyar, O.; Unluer, E.E. Overlooked Extremity Fractures in the Emergency Department. Ulus. Travma Acil Cerrahi Derg. Turk. J. Trauma Emerg. Surg. TJTES 2013, 19, 25–28. [Google Scholar] [CrossRef]
- Ganatra, N. A Comprehensive Study of Applying Object Detection Methods for Medical Image Analysis. In Proceedings of the 2021 8th International Conference on Computing for Sustainable Global Development (INDIACom), New Delhi, India, 17–19 March 2021; pp. 821–826. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 779–788. [Google Scholar]
- Terven, J.; Córdova-Esparza, D.-M.; Romero-González, J.-A. A Comprehensive Review of YOLO Architectures in Computer Vision: From YOLOv1 to YOLOv8 and YOLO-NAS. Mach. Learn. Knowl. Extr. 2023, 5, 1680–1716. [Google Scholar] [CrossRef]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, 23–28 June 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 580–587. [Google Scholar]
- Girshick, R. Fast R-CNN. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need; Cornell University Library: Ithaca, NY, USA, 2023. [Google Scholar]
- Wu, B.; Xu, C.; Dai, X.; Wan, A.; Zhang, P.; Yan, Z.; Tomizuka, M.; Gonzalez, J.; Keutzer, K.; Vajda, P. Visual Transformers: Token-Based Image Representation and Processing for Computer Vision; Cornell University Library: Ithaca, NY, USA, 2020. [Google Scholar]
- Zhang, S.; Zhu, X.; Lei, Z.; Wang, X.; Shi, H.; Li, S.Z. Detecting Face with Densely Connected Face Proposal Network. Neurocomputing 2018, 284, 119–127. [Google Scholar] [CrossRef]
- Guan, B.; Yao, J.; Zhang, G.; Wang, X. Thigh Fracture Detection Using Deep Learning Method Based on New Dilated Convolutional Feature Pyramid Network. Pattern Recognit. Lett. 2019, 125, 521–526. [Google Scholar] [CrossRef]
- Guan, B.; Zhang, G.; Yao, J.; Wang, X.; Wang, M. Arm Fracture Detection in X-Rays Based on Improved Deep Convolutional Neural Network. Comput. Electr. Eng. 2020, 81, 106530. [Google Scholar] [CrossRef]
- Rajpurkar, P.; Irvin, J.; Bagul, A.; Ding, D.; Duan, T.; Mehta, H.; Yang, B.; Zhu, K.; Laird, D.; Ball, R.L.; et al. MURA: Large Dataset for Abnormality Detection in Musculoskeletal Radiographs. arXiv 2017, arXiv:1712.06957. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef]
- Ma, Y.; Luo, Y. Bone Fracture Detection Through the Two-Stage System of Crack-Sensitive Convolutional Neural Network. Inform. Med. Unlocked 2021, 22, 100452. [Google Scholar] [CrossRef]
- Krupa, A.J.D.; Dhanalakshmi, S.; Lai, K.W.; Tan, Y.; Wu, X. An IoMT Enabled Deep Learning Framework for Automatic Detection of Fetal QRS: A Solution to Remote Prenatal Care. J. King Saud. Univ.-Comput. Inf. Sci. 2022, 34, 7200–7211. [Google Scholar] [CrossRef]
- Thakur, M.; Kuresan, H.; Dhanalakshmi, S.; Lai, K.W.; Wu, X. Soft Attention Based DenseNet Model for Parkinson’s Disease Classification Using SPECT Images. Front. Aging Neurosci. 2022, 14, 908143. [Google Scholar] [CrossRef]
- Ultralytics YOLOv8. Available online: https://docs.ultralytics.com/models/yolov8/ (accessed on 12 September 2024).
- Sha, G.; Wu, J.; Yu, B. Detection of Spinal Fracture Lesions Based on Improved Yolov2. In Proceedings of the 2020 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA), Dalian, China, 27–29 June 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 235–238. [Google Scholar]
- Ju, R.-Y.; Cai, W. Fracture Detection in Pediatric Wrist Trauma X-Ray Images Using YOLOv8 Algorithm. Sci. Rep. 2023, 13, 20077. [Google Scholar] [CrossRef]
- Nagy, E.; Janisch, M.; Hržić, F.; Sorantin, E.; Tschauner, S. A Pediatric Wrist Trauma X-Ray Dataset (GRAZPEDWRI-DX) for Machine Learning. Sci. Data 2022, 9, 222. [Google Scholar] [CrossRef] [PubMed]
- Zou, J.; Arshad, M.R. Detection of Whole Body Bone Fractures Based on Improved YOLOv7. Biomed. Signal Process. Control 2024, 91, 105995. [Google Scholar] [CrossRef]
- YOLO-NAS (Neural Architecture Search). Available online: https://docs.ultralytics.com/models/yolo-nas (accessed on 6 September 2024).
- Tan, M.; Pang, R.; Le, Q.V. EfficientDet: Scalable and Efficient Object Detection. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 10778–10787. [Google Scholar]
- Medaramatla, S.C.; Samhitha, C.V.; Pande, S.D.; Vinta, S.R. Detection of Hand Bone Fractures in X-Ray Images Using Hybrid YOLO NAS. IEEE Access 2024, 12, 57661–57673. [Google Scholar] [CrossRef]
- Abedeen, I.; Rahman, M.A.; Prottyasha, F.Z.; Ahmed, T.; Chowdhury, T.M.; Shatabda, S. FracAtlas: A Dataset for Fracture Classification, Localization and Segmentation of Musculoskeletal Radiographs. Sci. Data 2023, 10, 521. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.-Y.; Liao, H.-Y.M.; Wu, Y.-H.; Chen, P.-Y.; Hsieh, J.-W.; Yeh, I.-H. CSPNet: A New Backbone That Can Enhance Learning Capability of CNN. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Seattle, WA, USA, 14–19 June 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1571–1580. [Google Scholar]
- Wang, C.-Y.; Bochkovskiy, A.; Liao, H.-Y.M. YOLOv7: Trainable Bag-of-Freebies Sets New State-of-the-Art for Real-Time Object Detectors. In Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 17–24 June 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 7464–7475. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 1904–1916. [Google Scholar] [CrossRef]
- YOLOv5. Available online: https://docs.ultralytics.com/models/yolov5 (accessed on 6 September 2024).
- Hu, J.; Shen, L.; Albanie, S.; Sun, G.; Wu, E. Squeeze-and-Excitation Networks. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2019. [Google Scholar]
- Fu, H.; Song, G.; Wang, Y. Improved YOLOv4 Marine Target Detection Combined with CBAM. Symmetry 2021, 13, 623. [Google Scholar] [CrossRef]
- Padilla, R.; Netto, S.L.; Silva, E.A.B. da A Survey on Performance Metrics for Object-Detection Algorithms. In Proceedings of the 2020 International Conference on Systems, Signals and Image Processing (IWSSIP), Niteroi, Brazil, 1–3 July 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 237–242. [Google Scholar]
- Rahman, M.A.; Wang, Y. Optimizing Intersection-Over-Union in Deep Neural Networks for Image Segmentation. In Advances in Visual Computing; Springer: Cham, Switzerland, 2016; pp. 234–244. [Google Scholar] [CrossRef]
- Boyd, K.; Eng, K.H.; Page, C.D. Area under the Precision-Recall Curve: Point Estimates and Confidence Intervals. In Machine Learning and Knowledge Discovery in Databases; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2013; pp. 451–466. ISBN 978-3-642-40993-6. [Google Scholar]
- Lin, T.-Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft COCO: Common Objects in Context. In Computer Vision—ECCV 2014; Springer International Publishing: Cham, Switzerland, 2014; pp. 740–755. ISBN 3-319-10601-5. [Google Scholar]
- Liu, Y.; Cheng, D.; Zhang, D.; Xu, S.; Han, J. Capsule Networks with Residual Pose Routing. IEEE Trans. Neural Netw. Learn. Syst. 2024, 1, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, D.; Zhang, Q.; Han, J. Part-Object Relational Visual Saliency. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 44, 3688–3704. [Google Scholar] [CrossRef]
Custom | Size (Pixels) | Epochs | Batch Size | Param (m) | Optimizer | mAP-50 |
---|---|---|---|---|---|---|
Hand | 640 × 640 | 1000 | 32 | 25.9 | Auto | 0.637 |
Adam | 0.692 | |||||
AdamW | 0.561 | |||||
SGD | 0.711 |
Model | Precision (mAP 50) | Recall | F1 | Time (Seconds) |
---|---|---|---|---|
Yolov8m (Arm) | 0.594 | 0.491 | 0.538 | 6791 |
YOLOv8m-HA(Arm) | 0.713 | 0.642 | 0.676 | 5931 |
YOLOv8m (Arm and Leg) | 0.476 | 0.418 | 0.445 | 1763 |
YOLOv8m-HA (Arm and Leg) | 0.592 | 0.473 | 0.526 | 1698 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meza, G.; Ganta, D.; Gonzalez Torres, S. Deep Learning Approach for Arm Fracture Detection Based on an Improved YOLOv8 Algorithm. Algorithms 2024, 17, 471. https://doi.org/10.3390/a17110471
Meza G, Ganta D, Gonzalez Torres S. Deep Learning Approach for Arm Fracture Detection Based on an Improved YOLOv8 Algorithm. Algorithms. 2024; 17(11):471. https://doi.org/10.3390/a17110471
Chicago/Turabian StyleMeza, Gerardo, Deepak Ganta, and Sergio Gonzalez Torres. 2024. "Deep Learning Approach for Arm Fracture Detection Based on an Improved YOLOv8 Algorithm" Algorithms 17, no. 11: 471. https://doi.org/10.3390/a17110471
APA StyleMeza, G., Ganta, D., & Gonzalez Torres, S. (2024). Deep Learning Approach for Arm Fracture Detection Based on an Improved YOLOv8 Algorithm. Algorithms, 17(11), 471. https://doi.org/10.3390/a17110471