ASP-Based Declarative Reasoning in Data-Intensive Enterprise and IoT Applications
Abstract
:1. Introduction
2. The DLV-EE Framework
&p(; ) (1) |
append(X,Y,Z) :- string(X), string(Y), &append_string(X,Y;Z). |
- def append_string (X,Y):
- return str (X) + str (Y)
2.1. Reasoning over Hive
- nfriends(10).
- averageAge(25).
- possible_friend(Y) close_friend(giovanni,Y ).
- possible_friend(X) possible_friend(Y), close_friend(Y,X).
- suggested_friend(Y,A) possible_friend(Y), person(Y,A), A>18.
- invite(X) −invite(X) suggested_friend(X).
- :- #count{X: invite(X)} > N, nfriends(N).
- :- #sum{A,X: suggested_friend(X, A),invite(X)} < AVG*N, nfriends(N), averageAge(AVG).
- :∼ invite(X), suggested_friend(X,_), unlike(giovanni,X,D). [D@1,X]
&bigasp(rules, input, output, db, host:port, user, password; term[, term]). (2) |
- a string specifying some Datalog rules whose evaluation is delegated externally on the DB;
- a string (possibly empty) featuring a set of ASP facts to be exported to the DB;
- a string specifying the name and the arity of the predicate corresponding to the resulting output relation;
- a string specifying the name of the ODBC DSN (Data Source Name);
- :
- a string reporting the address and the port of the Hive server;
- a string specifying the username willing to connect to the server;
- a string specifying the user’s password;
- one or more (optional) output terms.
suggested_friend(Y,A) :- &bigasp( "possible_friend(Y) :- close_friend(giovanni, Y). possible_friend(X) :- possible_friend(Y), close_friend(Y,X). suggested_friend(Y,A) :- possible_friend(Y), person(Y,A), A>18.", "", "suggested_friend/2", "my_db", "192.168.1.1:10000", "my_username", "my_password"; Y,A,B,C).
2.2. Reasoning over MongoDB or Elasticsearch
&mongo(host, port, database, collection, query, key, aggr; term[, term]). (3) |
- is the address of the MongoDB server.
- is the port of the MongoDB server.
- is the name of the database over which the query has to be performed.
- is the name of the collection from which data is to be retrieved.
- is the query to be executed on MongoDB.
- is needed to select fields within the document; this parameter determines the arity of the predicate. If an empty string ("") is specified, all fields are returned.
- this parameter informs the Python module about the presence of aggregate functions, hence providing instructions about the search method to be used: "yes" indicates to use db.aggregate(), while "no" indicates to use db.find().
- one or more (optional) output terms determining the values of the field(s) retrieved via the query.
b(X,Y) :- & mongo (" localhost ", 27017, " admin ", " football ",
"{ age : {$gt: 30}} ", " _id : 0, name : 1, surname : 1"," yes"; X, Y ).
{ " player ": { " name ": " Cristiano ", " surname ": " Ronaldo " } } { " player ": { " name ": " Leo ", " surname ": " Messi " } }
&elastic(host, port, query,index; term [,term]) (4) |
- is the address of the Elasticsearch server.
- is the listening port of the Elasticsearch server (9200 is the standard one).
- is the query to be executed on MongoDB.
- is a string representing the index where the query should be performed.
- one or more (optional) output terms determining the values of the field(s) retrieved via the query.
: b(X,Y) :- & elasticsearch (" localhost ", 9200, "{’ _source ’:[’ teams ’,’ player ’],’ query ’:{’ match_all ’:{}}}}," anElasticIndex ";X,Y).
3. DLV-IoT
3.1. Development Tools for DLV-EE and DLV-IoT
3.1.1. Development of DLV-EE Solutions
3.1.2. Development of DLV-IoT Solutions
4. DLV-EE and DLV-IoT at Work: Some Use Cases
4.1. Planning Touristic Itineraries
4.2. Controlling Traffic Lights in Road Crossings
- In each crossing, the two traffic lights on the same road must simultaneously have the same status; thus, they are grouped in the pairs <s1, s4> and <s2, s3>. In addition, when <s1, s4> have the red status, <s2, s3> have the green status and vice-versa. Green means that vehicles can pass; red means that vehicles have to stop.
- Every 10 s, the traffic lights switch their status.
- In case a pedestrian wants to request to cross at a traffic light, it and its paired traffic light turn red. Consequently, the status of both traffic lights in the other pair of the same crossing switches to green.
- The green wave can be enabled at certain times of the day, to force the pair <s1, s4> of both crossings c1 and c2 to become simultaneously green, while all the other traffic lights must turn red.
- crossing(c1).
- traffic_light(s1,c1).
- traffic_light(s2,c1).
- traffic_light(s3,c1).
- traffic_light(s4,c1).
- samePair(s1,s4,C) crossing(C).
- samePair(s2,s3,C) crossing(C).
- status(T,C,red) | status(T,C,green) traffic_light(T,C).
- status(T1,C,Status1), status(T2,C,Status2), samePair(T1,T2,C), Status1!=Status2.
- status(T1,C,Status), status(T2,C,Status), T1!=T2, not samePair(T1,T2,C).
:- greenwave , state (s1 ,C, red).
5. Conclusion and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gelfond, M.; Lifschitz, V. Classical Negation in Logic Programs and Disjunctive Databases. New Gener. Comput. 1991, 9, 365–386. [Google Scholar] [CrossRef] [Green Version]
- Gelfond, M.; Lifschitz, V. The Stable Model Semantics for Logic Programming. In ICLP/SLP; MIT Press: Cambridge, MA, USA, 1988; pp. 1070–1080. [Google Scholar]
- Eiter, T.; Gottlob, G.; Mannila, H. Disjunctive Datalog. ACM Trans. Database Syst. 1997, 22, 364–418. [Google Scholar] [CrossRef]
- Brewka, G.; Eiter, T.; Truszczynski, M. Answer set programming at a glance. Commun. ACM 2011, 54, 92–103. [Google Scholar] [CrossRef]
- Simons, P.; Niemelä, I.; Soininen, T. Extending and implementing the stable model semantics. Artif. Intell. 2002, 138, 181–234. [Google Scholar] [CrossRef] [Green Version]
- Gebser, M.; Kaminski, R.; Kaufmann, B.; Schaub, T. Multi-shot ASP solving with clingo. Theory Pract. Log. Program. 2019, 19, 27–82. [Google Scholar] [CrossRef] [Green Version]
- Alviano, M.; Calimeri, F.; Dodaro, C.; Fuscà, D.; Leone, N.; Perri, S.; Ricca, F.; Veltri, P.; Zangari, J. The ASP System DLV2. In Lecture Notes in Computer Science, Proceedings of the LPNMR, Hanasaari, Espoo, Finland, 3–6 July 2017; Springer: Berlin/Heidelberg, Germany, 2017; Volume 10377, pp. 215–221. [Google Scholar]
- Lifschitz, V. Answer Set Programming; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Eiter, T.; Ianni, G.; Schindlauer, R.; Tompits, H. dlvhex: A System for Integrating Multiple Semantics in an Answer-Set Programming Framework. In INFSYS Research Report, Proceedings of the WLP, Vienna, Austria, 22–24 February 2006; Technische Universität Wien: Vienna, Austria, 2006; Volume 1843-06-02, pp. 206–210. [Google Scholar]
- Fabricius, F.; De Bortoli, M.; Selmair, M.; Reip, M.; Steinbauer, G.; Gebser, M. Towards ASP-based scheduling for industrial transport vehicles. In Proceedings of the Joint Austrian Computer Vision and Robotics Workshop, Graz, Austria, 16–17 April 2020. [Google Scholar]
- Abels, D.; Jordi, J.; Ostrowski, M.; Schaub, T.; Toletti, A.; Wanko, P. Train Scheduling with Hybrid Answer Set Programming. Theory Pract. Log. Program. 2021, 21, 317–347. [Google Scholar] [CrossRef]
- Bobda, C.; Yonga, F.; Gebser, M.; Ishebabi, H.; Schaub, T. High-level synthesis of on-chip multiprocessor architectures based on answer set programming. J. Parallel Distributed Comput. 2018, 117, 161–179. [Google Scholar] [CrossRef]
- Abseher, M.; Gebser, M.; Musliu, N.; Schaub, T.; Woltran, S. Shift Design with Answer Set Programming. Fundam. Informaticae 2016, 147, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Falkner, A.A.; Friedrich, G.; Schekotihin, K.; Taupe, R.; Teppan, E.C. Industrial Applications of Answer Set Programming. KI-Künstliche Intell. 2018, 32, 165–176. [Google Scholar] [CrossRef] [Green Version]
- Calimeri, F.; Fuscà, D.; Perri, S.; Zangari, J. External Computations and Interoperability in the New DLV Grounder. In Lecture Notes in Computer Science, Proceedings of the AI*IA, Bari, Italy, 14–17 November 2017; Springer: Berlin/Heidelberg, Germany, 2017; Volume 10640, pp. 172–185. [Google Scholar]
- Thimm, M. The Tweety Library Collection for Logical Aspects of Artificial Intelligence and Knowledge Representation. Künstliche Intell. 2017, 31, 93–97. [Google Scholar] [CrossRef]
- Calimeri, F.; Germano, S.; Palermiti, E.; Reale, K.; Ricca, F. Developing ASP Programs with ASPIDE and LoIDE. Künstliche Intell. 2018, 32, 185–186. [Google Scholar] [CrossRef]
- Oetsch, J.; Pührer, J.; Tompits, H. The SeaLion has Landed: An IDE for Answer-Set Programming-Preliminary Report. In Lecture Notes in Computer Science, Proceedings of the INAP/WLP, Vienna, Austria, 28–30 September 2011; Springer: Berlin/Heidelberg, Germany, 2011; Volume 7773, pp. 305–324. [Google Scholar]
- Ren, X.; Curé, O.; Naacke, H.; Xiao, G. RDF Stream Reasoning via Answer Set Programming on Modern Big Data Platform. In Proceedings of the ISWC (P&D/Industry/BlueSky), Monterey, CA, USA, 8–12 October 2018; Volume 2180. [Google Scholar]
- Güven, Ç.; Atzmueller, M. Applying Answer Set Programming for Knowledge-Based Link Prediction on Social Interaction Networks. Front. Big Data 2019, 2, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gebser, M.; Schaub, T.; Thiele, S.; Veber, P. Detecting inconsistencies in large biological networks with answer set programming. Theory Pract. Log. Program. 2011, 11, 323–360. [Google Scholar] [CrossRef] [Green Version]
- Zhong, S.; Sun, D.J. Logic-Driven Traffic Big Data Analytics: An Introduction. In Logic-Driven Traffic Big Data Analytics: Methodology and Applications for Planning; Springer Nature Singapore: Singapore, 2022; pp. 1–32. [Google Scholar]
- Costantini, S.; Gasperis, G.D.; Olivieri, R. Digital forensics and investigations meet artificial intelligence. Ann. Math. Artif. Intell. 2019, 86, 193–229. [Google Scholar] [CrossRef]
- Badii, C.; Bellini, P.; Difino, A.; Nesi, P. Smart City IoT Platform Respecting GDPR Privacy and Security Aspects. IEEE Access 2020, 8, 23601–23623. [Google Scholar] [CrossRef]
- Do, T.M.; Loke, S.W.; Liu, F. HealthyLife: An Activity Recognition System with Smartphone Using Logic-Based Stream Reasoning. In Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, Proceedings of the MobiQuitous; Springer: Berlin/Heidelberg, Germany, 2012; Volume 120, pp. 188–199. [Google Scholar]
- Dean, J.; Ghemawat, S. MapReduce: Simplified data processing on large clusters. Commun. ACM 2008, 51, 107–113. [Google Scholar] [CrossRef]
- Sánchez-Corcuera, R.; Núñez-Marcos, A.; Sesma-Solance, J.; Bilbao-Jayo, A.; Mulero, R.; Zulaika, U.; Azkune, G.; Almeida, A. Smart cities survey: Technologies, application domains and challenges for the cities of the future. Int. J. Distributed Sens. Netw. 2019, 15. [Google Scholar] [CrossRef] [Green Version]
- Hall, R.E.; Bowerman, B.; Braverman, J.; Taylor, J.; Todosow, H.; Von Wimmersperg, U. The Vision of a Smart City; Technical Report; Brookhaven National Lab. (BNL): Upton, NY, USA, 2000. [Google Scholar]
- Hollands, R.G. Will the real smart city please stand up? City 2008, 12, 303–320. [Google Scholar] [CrossRef]
- D’Aniello, G.; Gaeta, M.; Orciuoli, F. An approach based on semantic stream reasoning to support decision processes in smart cities. Telemat. Inform. 2018, 35, 68–81. [Google Scholar] [CrossRef]
- Dustdar, S.; Nastic, S.; Scekic, O. Smart Cities-The Internet of Things, People and Systems; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calimeri, F.; Leone, N.; Melissari, G.; Pacenza, F.; Perri, S.; Reale, K.; Ricca, F.; Zangari, J. ASP-Based Declarative Reasoning in Data-Intensive Enterprise and IoT Applications. Algorithms 2023, 16, 159. https://doi.org/10.3390/a16030159
Calimeri F, Leone N, Melissari G, Pacenza F, Perri S, Reale K, Ricca F, Zangari J. ASP-Based Declarative Reasoning in Data-Intensive Enterprise and IoT Applications. Algorithms. 2023; 16(3):159. https://doi.org/10.3390/a16030159
Chicago/Turabian StyleCalimeri, Francesco, Nicola Leone, Giovanni Melissari, Francesco Pacenza, Simona Perri, Kristian Reale, Francesco Ricca, and Jessica Zangari. 2023. "ASP-Based Declarative Reasoning in Data-Intensive Enterprise and IoT Applications" Algorithms 16, no. 3: 159. https://doi.org/10.3390/a16030159
APA StyleCalimeri, F., Leone, N., Melissari, G., Pacenza, F., Perri, S., Reale, K., Ricca, F., & Zangari, J. (2023). ASP-Based Declarative Reasoning in Data-Intensive Enterprise and IoT Applications. Algorithms, 16(3), 159. https://doi.org/10.3390/a16030159