New Step Size Control Algorithm for Semi-Implicit Composition ODE Solvers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Using Variable-Step Integration with Composition Schemes
2.2. Semi-Implicit CD Method
2.3. Semi-Explicit Modification of Midpoint Method
2.4. Truncation Error Estimators for Composition ODE Solvers
2.5. Embedded Error Estimators in Composition Schemes
2.6. New Technique to Estimate Local Truncation Error
Algorithm 1. Pseudocode for the proposed step size control algorithm |
Begin Algorithm |
1 Setn, h; |
2 Set vector of composition coefficients γ; |
3 Set s as number of composition stages; |
4 |
5 Begin FOR i = 1, …, s |
6 Calculate a new value of h using formula h = hγ [i]; |
7 Calculate xn+ 0.5n using semi-explicit D method with |
step size h/2; |
8 n using explicit Euler method |
n+ 0.5; |
9 n+ 1n using semi-implicit D method with |
n+ 0.5; |
10 End FOR cycle; |
16 Choose new step value h; |
18 End DO-WHILE cycle; |
End Algorithm |
3. Results
3.1. Problem 1: Rössler System
3.2. Problem 2: Van der Pol Oscillator
3.3. Problem 3: Two-Body Problem
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sofroniou, M.; Spaletta, G. Derivation of symmetric composition constants for symmetric integrators. Optim. Methods Softw. 2005, 20, 597–613. [Google Scholar] [CrossRef]
- Haier, E.; Lubich, C.; Wanner, G. Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Leimkuhler, B.; Reich, S. Simulating Hamiltonian Dynamics (No. 14); Cambridge University Press: Cambridge, MA, USA, 2004. [Google Scholar]
- Roulet, J.; Choi, S.; Vaníček, J. Efficient geometric integrators for nonadiabatic quantum dynamics. II. The diabatic representation. J. Chem. Phys. 2019, 150, 204113. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, H. Construction of higher order symplectic integrators. Phys. Lett. A 1990, 150, 262–268. [Google Scholar] [CrossRef]
- Suzuki, M. Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations. Phys. Lett. A 1990, 146, 319–323. [Google Scholar] [CrossRef]
- Murua, A.; Sanz–Serna, J.M. Order conditions for numerical integrators obtained by composing simpler integrators. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 1999, 357, 1079–1100. [Google Scholar] [CrossRef]
- Butusov, D.N.; Ostrovskii, V.Y.; Karimov, A.I.; Andreev, V.S. Semi-explicit composition methods in memcapacitor circuit simulation. IJERTCS 2019, 10, 37–52. [Google Scholar] [CrossRef]
- Blanes, S.; Casas, F.; Thalhammer, M. Splitting and composition methods with embedded error estimators. Appl. Numer. Math. 2019, 146, 400–415. [Google Scholar] [CrossRef] [Green Version]
- Kahan, W.; Li, R.C. Composition constants for raising the orders of unconventional schemes for ordinary differential equations. Math. Comput. 1997, 66, 1089–1099. [Google Scholar] [CrossRef] [Green Version]
- Hairer, E.; Wanner, G.; Nørsett, S.P. Solving Ordinary Differential Equations I. Nonstiff Problems; Springer: Berlin/Heidelberg, Germany, 1987. [Google Scholar]
- Butusov, D. Adaptive Stepsize Control for Extrapolation Semi-Implicit Multistep ODE Solvers. Mathematics 2021, 9, 950. [Google Scholar] [CrossRef]
- Butusov, D.; Tutueva, A.; Fedoseev, P.; Terentev, A.; Karimov, A. Semi-implicit multistep extrapolation ODE solvers. Mathematics 2020, 8, 943. [Google Scholar] [CrossRef]
- Süli, E.; David, F.M. An Introduction to Numerical Analysis; Cambridge University Press: Cambridge, MA, USA, 2003. [Google Scholar]
- Hairer, E.; Lubich, C. Extrapolation at stiff differential equations. Numer. Math. 1988, 52, 377–400. [Google Scholar] [CrossRef]
- Rössler, O. An equation for continuous chaos. Phys. Lett. A 1976, 57, 397–398. [Google Scholar] [CrossRef]
- Van der Pol, B. «On relaxation-oscillations», The London, Edinburgh and Dublin Phil. Mag. J. Sci. 1927, 2, 978–992. [Google Scholar] [CrossRef]
- Moo, K.W.; Senu, N.; Ismail, F.; Suleiman, M. New phase-fitted and amplification-fitted fourth-order and fifth-order Runge-Kutta-Nyström methods for oscillatory problems. Abstr. Appl. Anal. 2013, 2013, 939367. [Google Scholar] [CrossRef]
s1ord2 | |
1 | |
s5ord4 | |
0.414490771794375737142354063 | |
−0.65796308717750294856941625 | |
s7ord6 | |
0.78451361047755726382 | |
0.23557321335935813368 | |
−1.1776799841788710069 | |
1.3151863206839112189 | |
s17ord8 | |
0.13020248308889008088 | |
0.56116298177510838456 | |
−0.38947496264484728641 | |
0.15884190655515560090 | |
−0.39590389413323757734 | |
0.18453964097831570709 | |
0.25837438768632204729 | |
0.29501172360931029887 | |
−0.60550853383003451170 |
Order | Initial Conditions | T | Step Size | Tolerance | ||
---|---|---|---|---|---|---|
Min | Start | Max | ||||
4 | (1.6; 0; −0.1) | 15 | 1 | |||
6 | (1.6; 0; −0.1) | 15 | 1 | |||
8 | (1.6; 0; −0.1) | 15 | 1 |
Order | Tolerance | Total Number of Steps | |||
---|---|---|---|---|---|
OCDM | DCOM | BEE | ECDM | ||
4 | 86 | 662 | 186 | 71 | |
134 | 1423 | 328 | 100 | ||
210 | 3063 | 581 | 151 | ||
330 | 6598 | 1031 | 231 | ||
522 | 14,213 | 1831 | 359 | ||
6 | 146 | 191 | 307 | 138 | |
199 | 301 | 484 | 177 | ||
273 | 475 | 766 | 219 | ||
377 | 751 | 1212 | 296 | ||
524 | 1188 | 1920 | 405 | ||
8 | 61 | 118 | 116 | 55 | |
68 | 158 | 168 | 67 | ||
84 | 217 | 244 | 83 | ||
107 | 299 | 357 | 104 | ||
137 | 414 | 522 | 132 |
Order | Initial Conditions | T | Step Size | Tolerance | ||
---|---|---|---|---|---|---|
Min | Start | Max | ||||
4 | (1.15; 0) | 15 | 1 | |||
6 | (1.15; 0) | 15 | 1 | |||
8 | (1.52; 0) | 15 | 1 |
Order | Tolerance | Total Number of Steps | |||
---|---|---|---|---|---|
OCDM | DCOM | BEE | ECDM | ||
4 | 115 | 823 | 232 | 133 | |
162 | 1760 | 395 | 187 | ||
258 | 3790 | 687 | 376 | ||
442 | 8039 | 1206 | 445 | ||
777 | 14,159 | 2133 | 698 | ||
1748 | 22,080 | 3795 | 1009 | ||
6 | 95 | 119 | 177 | 106 | |
136 | 169 | 265 | 145 | ||
218 | 253 | 404 | 198 | ||
372 | 395 | 635 | 282 | ||
674 | 624 | 1005 | 414 | ||
2164 | 991 | 1595 | 621 | ||
8 | 56 | 90 | 80 | 65 | |
67 | 117 | 113 | 82 | ||
92 | 166 | 169 | 118 | ||
237 | 245 | 266 | 170 | ||
306 | 355 | 438 | 253 | ||
377 | 560 | 602 | 336 |
Order | Initial Conditions | T | Step Size | Tolerance | ||
---|---|---|---|---|---|---|
Min | Start | Max | ||||
4 | (1; 0; 0; 1) | 50 | 1 × 10−4 | 5 × 10−3 | 1 | 1 × 10−4–1 × 10−9 |
6 | (1; 0; 0; 1) | 50 | 1 × 10−4 | 5 × 10−3 | 1 | 1 × 10−6–1 × 10−11 |
8 | (1; 0; 0; 1) | 50 | 1 × 10−4 | 5 × 10−3 | 1 | 1 × 10−5–1 × 10−10 |
Order | Tolerance | Total Number of Steps | |||
---|---|---|---|---|---|
OCDM | DCOM | BEE | ECDM | ||
4 | 177 | 986 | 335 | 156 | |
279 | 2121 | 593 | 246 | ||
441 | 4567 | 1053 | 389 | ||
697 | 9837 | 1871 | 615 | ||
1102 | 21,192 | 3324 | 972 | ||
1744 | 45,655 | 5910 | 1539 | ||
6 | 309 | 442 | 745 | 289 | |
427 | 699 | 1179 | 401 | ||
593 | 1106 | 1868 | 547 | ||
823 | 1751 | 2959 | 759 | ||
1143 | 2774 | 4689 | 1048 | ||
1587 | 4395 | 7430 | 1452 | ||
8 | 88 | 234 | 197 | 83 | |
113 | 322 | 288 | 106 | ||
146 | 444 | 421 | 136 | ||
187 | 611 | 616 | 175 | ||
241 | 849 | 904 | 226 | ||
310 | 1179 | 1325 | 290 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fedoseev, P.; Pesterev, D.; Karimov, A.; Butusov, D. New Step Size Control Algorithm for Semi-Implicit Composition ODE Solvers. Algorithms 2022, 15, 275. https://doi.org/10.3390/a15080275
Fedoseev P, Pesterev D, Karimov A, Butusov D. New Step Size Control Algorithm for Semi-Implicit Composition ODE Solvers. Algorithms. 2022; 15(8):275. https://doi.org/10.3390/a15080275
Chicago/Turabian StyleFedoseev, Petr, Dmitriy Pesterev, Artur Karimov, and Denis Butusov. 2022. "New Step Size Control Algorithm for Semi-Implicit Composition ODE Solvers" Algorithms 15, no. 8: 275. https://doi.org/10.3390/a15080275
APA StyleFedoseev, P., Pesterev, D., Karimov, A., & Butusov, D. (2022). New Step Size Control Algorithm for Semi-Implicit Composition ODE Solvers. Algorithms, 15(8), 275. https://doi.org/10.3390/a15080275