Optimized Score Level Fusion for Multi-Instance Finger Vein Recognition
Abstract
:1. Introduction
2. Literature Review
3. Contributions
- A multi-instance finger vein system uses different instances of a finger vein, such as index, middle, and ring finger as the feature set. The use of multiple instances increases the number of unique patterns and lowers the interclass similarities. It also allows different finger vein instances to provide more information and thus maintain a minimum performance.
- We propose to optimize the hyperparameters of the histogram of oriented gradients (HOG) feature extractor and support vector machine (SVM) matcher for better performance. Improved performance is observed using the proposed optimization method, which will be indicated in the experimental analysis section. The use of optimizer for HOG features was inspired by the work of Nickfarjam et al. [11] that show improved performance of HOG when using self-adaptive particle swarm optimization (SPSO) for hyperparameter optimization. However, we propose the use of Bayesian optimization as an alternative optimizer to SPSO. SPSO is a population-based optimizer, which means it performs multiple objective function evaluations, according to the size of the population in each optimization step. This makes SPSO much more computationally expensive compared to Bayesian optimization which only performs a single objective function evaluation in each optimization step while maintaining a robust performance.
- The score level fusion method based on Bayesian optimized SVM score fusion (BSSF) and Bayesian optimized SVM based fusion (BSBF) is proposed. In the BSSF method, each finger vein instance is matched using SVM. The resulting score for each finger vein instance is then multiplied with a weight that is optimized using a Bayesian optimizer. The weighted scores are then summed and used to determine the decision of match or not match. In the BSBF method, each finger vein instance is matched using an Euclidean distance matcher. The resulting score for each finger vein instance is then normalized and concatenated as a score vector. The score vector is then fed into the SVM classifier for decision. BSSF should give better performance as compared to BSBF, since there is less information loss, by classifying the HOG feature with SVM. Meanwhile, BSBF classifies the score after Euclidean distance matching, which results in more information loss. However, BSSF requires access to the features from a biometric system, which is not always available in the biometric system. On the other hand, BSBF only requires access to the scores from a biometric system, which is usually available even in a proprietary biometric system; this gives BSBF wider compatibility as compared to BSSF.
4. Proposed Method
4.1. Preprocessing
4.2. Feature Extraction
- L2:
- L2-Hys: L2, followed by limiting the maximum value of v to 0.2, and renormalizing.
- L1-sqrt: )
- L1: )
4.3. Fusion and Matching with BSSF and BSBF
4.4. Optimization
Algorithm 1 Sequential Model-Based Optimization (SMBO) |
Data: // initialize dataset with random samples from domain InitSamples // run for T steps for to do // train a model based on data FitModel // select best hyperparameters based on model ; // evaluate the hyperparameters // append new data end |
Algorithm 2 BSSF Objective Function |
Input: Output: error rate // use hyperparameters from Bayesian optimizer trial from Bayesian optimizer; trial from Bayesian optimizer; trial from Bayesian optimizer; // run for each finger for do // HOG feature extraction from data GetHOG ( GetHOG ( // train SVM using HOG features SVMFit(; // use the trained SVM to predict test data to produce probability, which is used as score SVMPredict( // weighted sum of scores for all fingers ; end // calculate EER by comparing prediction with actual result return eer; |
Algorithm 3 BSBF Objective Function |
Input: Output: error rate // use hyperparameters from Bayesian optimizer trial from Bayesian optimizer; trial from Bayesian optimizer; // run for each finger for do // HOG feature extraction from data GetHOG( // calculate Euclidean distance from data ; // normalize the scores Normalize(); end // concatenate all the scores from each finger as a score vector // split dataset into train and test data TrainTestSplit(; // train a SVM model SVMFit( // use the trained model to predict test data SVMPredict(); // calculate EER GetEER( return eer; |
5. Experimental Analysis
5.1. Experimental Setup
5.2. Performance Analysis of Multi-Instance Feature Descriptors Biometrics
6. Conclusions and Future Works
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ross, A.; Jain, A.K. Multimodal Biometrics: An Overview. In Proceedings of the Signal Processing Conference, Vienna, Austria, 6–10 September 2004; pp. 1221–1224. [Google Scholar]
- Dass, S.C.; Nandakumar, K.; Jain, A.K. A Principled Approach to Score Level Fusion in Multimodal Biometric Systems. In International Conference on Audio- and Video-Based Biometric Person Authentication; Springer: Berlin/Heidelberg, Germany, 2005; pp. 1049–1058. [Google Scholar] [CrossRef] [Green Version]
- Dalal, N.; Triggs, B. Histograms of Oriented Gradients For Human Detection. In Proceedings of the 2005 IEEE Computer Society Conference On Computer Vision And Pattern Recognition (CVPR), San Diego, CA, USA, 20–25 June 2005; Volume 1, pp. 886–893. [Google Scholar] [CrossRef] [Green Version]
- William, A.; Ong, T.S.; Lau, S.H.; Goh, M.K.O. Finger Vein Verification Using Local Histogram of Hybrid Texture Descriptors. In Proceedings of the 2015 Ieee International Conference On Signal And Image Processing Applications (Icsipa), Kuala Lumpur, Malaysia, 19–21 October 2015; pp. 304–308. [Google Scholar] [CrossRef]
- Cui, F.; Yang, G. Score Level Fusion of Fingerprint and Finger Vein Recognition. J. Comput. Inf. Syst. 2011, 7, 5723–5731. Available online: https://www.researchgate.net/publication/267206184_Score_Level_Fusion_of_Fingerprint And_Finger_Vein_Recognition (accessed on 10 January 2022).
- Yang, J.; Zhang, X. Feature-Level Fusion Of Fingerprint And Finger-Vein For Personal Identification. Pattern Recognit. Lett. 2012, 33, 623–628. [Google Scholar] [CrossRef]
- Yang, Y.; Lin, K.; Han, F.; Zhang, Z. Dynamic Weighting For Effective Fusion of Fingerprint And Finger Vein. Pica. Prog. Intell. Comput. Appl. 2012, 1, 50–61. [Google Scholar]
- He, M.; Horng, S.J.; Fan, P.; Run, R.S.; Chen, R.J.; Lai, J.L.; Khan, M.K.; Sentosa, K.O. Performance evaluation of score level fusion in multimodal biometric systems. Pattern Recognit. 2010, 43, 1789–1800. [Google Scholar] [CrossRef]
- Khellat-Kihel, S.; Abrishambaf, R.; Monteiro, J.L.; Benyettou, M. Multimodal Fusion of The Finger Vein, Fingerprint and The Finger-Knuckle-Print Using Kernel Fisher Analysis. Appl. Soft Comput. 2016, 42 (Suppl. C), 439–447. [Google Scholar] [CrossRef]
- Kim, W.; Song, J.M.; Park, K.R. Multimodal Biometric Recognition Based on Convolutional Neural Network by the Fusion of Finger-Vein and Finger Shape Using Near-Infrared (NIR) Camera Sensor. Sensors 2018, 18, 2296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nickfarjam, A.M.; Najafabadi, A.P.; Ebrahimpour-Komleh, H. Efficient Parameter Tuning for Histogram of Oriented Gradients. In Proceedings of the 2014 22nd Iranian Conference on Electrical Engineering (ICEE), Tehran, Iran, 20–22 May 2014. [Google Scholar] [CrossRef]
- Wang, F.; Han, J. Multimodal biometric authentication based on score level fusion using support vector machine. Opto-Electron. Rev. 2009, 17, 57–64. [Google Scholar] [CrossRef]
- Agrawal, T. Hyperparameter Optimization in Machine Learning; Apress Berkeley: Berkeley, CA, USA, 2021; pp. 81–108. [Google Scholar]
- Dewancker, I.; Mccourt, M.; Clark, S. Bayesian Optimization Primer. 2015. Available online: https://app.sigopt.com/static/pdf/SigOpt_Bayesian_Optimization_Primer.pdf (accessed on 2 January 2022).
- Bergstra, J.S.; Bardenet, R.; Bengio, Y.; Kégl, B. Algorithms For Hyper-Parameter Optimization. Adv. Neural Inf. Processing Syst. 2011, 24, 2456–2554. [Google Scholar]
- Yin, Y.; Liu, L.; Sun, X. SDUMLA-HMT: A Multimodal Biometric Database. In Proceedings of the Biometric Recognition, Beijing, China, 3–4 December 2011; pp. 260–268. [Google Scholar] [CrossRef]
- Ton, B.T.; Veldhuis, R.N.J. A high quality finger vascular pattern dataset collected using a custom designed capturing device. In Proceedings of the 2013 International Conference on Biometrics (ICB), Madrid, Spain, 4–7 June 2013; pp. 1–5. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
Fingers | Matchers | Orientations | Pixels | Cells | Norm | Transform_sqrt | EER |
---|---|---|---|---|---|---|---|
(‘li’,) | BSBF-linear1 | 9 | 8 | 3 | L2-Hys | Yes | 17.45% |
(‘li’,) | BSBF-linear2 | 15 | 30 | 2 | L2-Hys | No | 12.85% |
(‘li’,) | BSBF-rbf1 | 9 | 8 | 3 | L2-Hys | Yes | 17.45% |
(‘li’,) | BSBF-rbf2 | 9 | 29 | 2 | L2-Hys | No | 12.77% |
(‘li’,) | BSSF-linear1 | 9 | 8 | 3 | L2-Hys | Yes | 2.71% |
(‘li’,) | BSSF-linear2 | 16 | 26 | 2 | L1-sqrt | Yes | 1.57% |
(‘li’,) | BSSF-rbf1 | 9 | 8 | 3 | L2-Hys | Yes | 2.71% |
(‘li’,) | BSSF-rbf2 | 18 | 26 | 2 | L2-Hys | Yes | 1.35% |
(‘li’, ‘lm’) | BSBF-linear1 | 9 | 8 | 3 | L2-Hys | Yes | 14.78% |
(‘li’, ‘lm’) | BSBF-linear2 | 13 | 27 | 3 | L2-Hys | No | 11.85% |
(‘li’, ‘lm’) | BSBF-rbf1 | 9 | 8 | 3 | L2-Hys | Yes | 14.15% |
(‘li’, ‘lm’) | BSBF-rbf2 | 19 | 29 | 2 | L2-Hys | No | 9.60% |
(‘li’, ‘lm’) | BSSF-linear1 | 9 | 8 | 3 | L2-Hys | Yes | 1.10% |
(‘li’, ‘lm’) | BSSF-linear2 | 14 | 8 | 1 | L1 | Yes | 0.58% |
(‘li’, ‘lm’) | BSSF-rbf1 | 9 | 8 | 3 | L2-Hys | Yes | 1.10% |
(‘li’, ‘lm’) | BSSF-rbf2 | 7 | 26 | 2 | L2-Hys | No | 0.77% |
(‘li’, ‘lm’, ‘lr’) | BSBF-linear1 | 9 | 8 | 3 | L2-Hys | Yes | 12.22% |
(‘li’, ‘lm’, ‘lr’) | BSBF-linear2 | 17 | 28 | 1 | L2 | No | 9.80% |
(‘li’, ‘lm’, ‘lr’) | BSBF-rbf1 | 9 | 8 | 3 | L2-Hys | Yes | 10.94% |
(‘li’, ‘lm’, ‘lr’) | BSBF-rbf2 | 16 | 26 | 1 | L2 | No | 6.44% |
(‘li’, ‘lm’, ‘lr’) | BSSF-linear1 | 9 | 8 | 3 | L2-Hys | Yes | 0.68% |
(‘li’, ‘lm’, ‘lr’) | BSSF-linear2 | 8 | 15 | 1 | L2-Hys | No | 0.56% |
(‘li’, ‘lm’, ‘lr’) | BSSF-rbf1 | 9 | 8 | 3 | L2-Hys | Yes | 0.56% |
(‘li’, ‘lm’, ‘lr’) | BSSF-rbf2 | 10 | 17 | 1 | L2 | Yes | 0.48% |
Fingers | Matchers | Orientations | Pixels | Cells | Norm | Transform_sqrt | EER |
---|---|---|---|---|---|---|---|
(‘li’,) | BSBF-linear1 | 9 | 8 | 3 | L2-Hys | Yes | 13.57% |
(‘li’,) | BSBF-linear2 | 9 | 18 | 1 | L2 | No | 9.09% |
(‘li’,) | BSBF-rbf1 | 9 | 8 | 3 | L2-Hys | Yes | 13.57% |
(‘li’,) | BSBF-rbf2 | 9 | 18 | 1 | L2 | No | 9.09% |
(‘li’,) | BSSF-linear1 | 9 | 8 | 3 | L2-Hys | Yes | 3.60% |
(‘li’,) | BSSF-linear2 | 14 | 23 | 2 | L1-sqrt | Yes | 1.72% |
(‘li’,) | BSSF-rbf1 | 9 | 8 | 3 | L2-Hys | Yes | 5.42% |
(‘li’,) | BSSF-rbf2 | 19 | 28 | 3 | L1-sqrt | No | 2.19% |
(‘li’, ‘lm’) | BSBF-linear1 | 9 | 8 | 3 | L2-Hys | Yes | 6.04% |
(‘li’, ‘lm’) | BSBF-linear2 | 19 | 30 | 1 | L1-sqrt | No | 3.71% |
(‘li’, ‘lm’) | BSBF-rbf1 | 9 | 8 | 3 | L2-Hys | Yes | 5.56% |
(‘li’, ‘lm’) | BSBF-rbf2 | 20 | 25 | 1 | L2 | Yes | 3.61% |
(‘li’, ‘lm’) | BSSF-linear1 | 9 | 8 | 3 | L2-Hys | Yes | 0.83% |
(‘li’, ‘lm’) | BSSF-linear2 | 14 | 14 | 1 | L2 | No | 0.39% |
(‘li’, ‘lm’) | BSSF-rbf1 | 9 | 8 | 3 | L2-Hys | Yes | 2.03% |
(‘li’, ‘lm’) | BSSF-rbf2 | 17 | 29 | 3 | L1-sqrt | No | 0.22% |
(‘li’, ‘lm’, ‘lr’) | BSBF-linear1 | 9 | 8 | 3 | L2-Hys | Yes | 5.00% |
(‘li’, ‘lm’, ‘lr’) | BSBF-linear2 | 7 | 30 | 1 | L2 | No | 2.64% |
(‘li’, ‘lm’, ‘lr’) | BSBF-rbf1 | 9 | 8 | 3 | L2-Hys | Yes | 4.74% |
(‘li’, ‘lm’, ‘lr’) | BSBF-rbf2 | 5 | 30 | 1 | L2 | Yes | 1.84% |
(‘li’, ‘lm’, ‘lr’) | BSSF-linear1 | 9 | 8 | 3 | L2-Hys | Yes | 0.47% |
(‘li’, ‘lm’, ‘lr’) | BSSF-linear2 | 8 | 27 | 1 | L2 | No | 0.31% |
(‘li’, ‘lm’, ‘lr’) | BSSF-rbf1 | 9 | 8 | 3 | L2-Hys | Yes | 1.67% |
(‘li’, ‘lm’, ‘lr’) | BSSF-rbf2 | 7 | 27 | 2 | L1-sqrt | No | 0.47% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teng, J.H.; Ong, T.S.; Connie, T.; Sonai Muthu Anbananthen, K.; Min, P.P. Optimized Score Level Fusion for Multi-Instance Finger Vein Recognition. Algorithms 2022, 15, 161. https://doi.org/10.3390/a15050161
Teng JH, Ong TS, Connie T, Sonai Muthu Anbananthen K, Min PP. Optimized Score Level Fusion for Multi-Instance Finger Vein Recognition. Algorithms. 2022; 15(5):161. https://doi.org/10.3390/a15050161
Chicago/Turabian StyleTeng, Jackson Horlick, Thian Song Ong, Tee Connie, Kalaiarasi Sonai Muthu Anbananthen, and Pa Pa Min. 2022. "Optimized Score Level Fusion for Multi-Instance Finger Vein Recognition" Algorithms 15, no. 5: 161. https://doi.org/10.3390/a15050161
APA StyleTeng, J. H., Ong, T. S., Connie, T., Sonai Muthu Anbananthen, K., & Min, P. P. (2022). Optimized Score Level Fusion for Multi-Instance Finger Vein Recognition. Algorithms, 15(5), 161. https://doi.org/10.3390/a15050161