Finite-Time Control of Singular Linear Semi-Markov Jump Systems
Abstract
:1. Introduction
- (1)
- A suitable semi-positive definite Lyapunov-like function is designed, which gives a sufficient condition for making the considered closed-loop SSMJSs regular, impulse-free and stochastically finite-time-stable.
- (2)
- To get the solvable condition, the coupling term about a singular parameter and jump matrix is dealt with through matrix transformation and the Schur complement lemma.
- (3)
- Some matrix decomposition and construction ideas are introduced, which simplify a complex matrix inequality with an equality constraint to a set of strict matrix inequalities and further to a set of linear matrix inequalities using one dimensional searching.
2. Problem Formulation
- 1.
- The pair is said to be regular, if for each , , that is, , .
- 2.
- The pair is said to be impulse-free, if for each , .
- 3.
- The SSMJS in (1) with and is said to be regular and impulse-free, if for each , the pair is regular and impulse-free.
3. Results
3.1. Stochastically Finite-Time Stabilization
3.2. Stochastically Finite-Time Boundedness
4. Numerical Examples
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Boukas, E.K.; Shi, P. Stochastic stability and guaranteed cost control of discrete-time uncertain systems with Markovian jump parameters. Int. J. Robust Nonlinear Control 1998, 8, 1155–1167. [Google Scholar] [CrossRef]
- Chavez-Fuentes, J.R.; Costa, E.F.; Mayta, J.E.; Terra, M.H. Regularity and stability analysis of discrete-time Markov jump linear singular systems. Automatica 2017, 76, 32–40. [Google Scholar] [CrossRef]
- Cunha, R.F.; Gabriel, G.W.; Geromel, J.C. Robust partial sampled-data state feedback control of Markov jump linear systems. Int. J. Syst. Sci. 2019, 50, 2142–2152. [Google Scholar] [CrossRef]
- Yang, S.Q.; Lin, L.Y. Dynamic output feedback finite-horizon control for Markov jump systems with actuator saturations. IEEE Access 2019, 7, 132587–132593. [Google Scholar] [CrossRef]
- Wan, Y.M.; Keviczky, T.; Verhaegen, M. Fault estimation filter design with guaranteed stability using Markov parameters. IEEE Trans. Autom. Control 2018, 63, 1132–1169. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Shi, Y. Stochastic stability and robust stabilization of semi-Markov jump linear systems. Int. J. Robust Nonlinear Control 2013, 23, 2028–2043. [Google Scholar] [CrossRef]
- Fang, Y.; Sun, L.J. Developing a semi-Markov process model for bridge deterioration prediction in Shanghai. Sustainability 2019, 11, 5524. [Google Scholar] [CrossRef] [Green Version]
- Titman, A.C. Estimating parametric semi-Markov models from panel data using phase-type approximations. Stat. Comput. 2014, 24, 155–164. [Google Scholar] [CrossRef]
- Lai, C.D.; Xie, M.; Murthy, D.N.P. A Modified Weibull Distribution. IEEE Trans. Reliab. 2003, 52, 33–37. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Liu, S.Q.; Cui, J.A. Threshold dynamics and ergodicity of an SIRS epidemic model with semi-Markov switching. J. Differ. Equ. 2019, 266, 3973–4017. [Google Scholar] [CrossRef]
- Kutner, R.; Masoliver, J. The continuous time random walk, still trendy: Fifty-year history, state of art and outlook. Eur. Phys. J. B 2017, 90, 50. [Google Scholar] [CrossRef] [Green Version]
- Ogura, M.; Martin, C.F. Stability analysis of linear systems subject to regenerative switchings. Syst. Control. Lett. 2015, 75, 94–100. [Google Scholar] [CrossRef] [Green Version]
- Machida, F.; Xia, R.F.; Trivedi, K.S. Performability modeling for RAID storage systems by Markov regenerative process. IEEE Trans. Dependable Secure Comput. 2018, 15, 138–150. [Google Scholar] [CrossRef]
- Ogura, M.; Martin, C.F. Stability analysis of positive semi-Markovian jump linear systems with state resets. SIAM J. Control Optim. 2014, 52, 1809–1831. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.X.; Cai, B.; Shi, Y. Stabilization of hidden semi-Markov jump systems: Emission probability approach. Automatica 2019, 101, 87–95. [Google Scholar] [CrossRef]
- Anderson, P.M. Power System Control and Stability; The Iowa State University Press: Ames, IA, USA, 1977. [Google Scholar]
- Li, F.; Xu, S.; Shen, H.; Ma, Q. Passivity-based control for hidden Markov jump systems with singular perturbations and partially unknown probabilities. IEEE Trans. Autom. Control 2020, 65, 3701–3706. [Google Scholar] [CrossRef]
- Lee, C.M.; Chen, K.F.; Cheng, C.A.; Huang, J.H. A new finite sum inequality approach to delay dependent control for discrete singular systems. Adv. Sci. Lett. 2012, 8, 759–764. [Google Scholar] [CrossRef]
- Dai, L. Singular Control Systems; Springer: Berlin/Heidelberg, Germany, 1989. [Google Scholar]
- Xu, S.Y.; Lam, J. Robust Control and Filtering of Singular Systems; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Xia, Y.Q.; Boukas, E.K.; Shi, P.; Zhang, J.H. Stability and stabilization of continuous-time singular hybrid systems. Automatica 2009, 45, 1504–1509. [Google Scholar] [CrossRef]
- Kwon, N.K.; Park, I.S.; Park, P.; Park, C. Dynamic output-feedback control for singular jump systems: LMI approach. IEEE Trans. Autom. Control 2017, 62, 5396–5400. [Google Scholar] [CrossRef]
- Feng, Z.G.; Jiang, Z.Y.; Zheng, W.X. Reachable set synthesis of singular Markovian jump systems. J. Franklin Inst. 2020, 357, 13785–13799. [Google Scholar] [CrossRef]
- Wu, B.Y.; Zhao, Y. Dissipative control for fuzzy singular Markov jump systems with state-dependent noise and asynchronous modes. IEEE Access 2021, 9, 25691–25702. [Google Scholar] [CrossRef]
- Sathishkumar, M.; Sakthivel, R.; Wang, C.; Kaviarasan, B.; Anthoni, S.M. Non-fragile filtering for singular Markovian jump systems with missing measurements. Signal Process. 2018, 142, 125–136. [Google Scholar] [CrossRef]
- Qi, W.; Zong, G.; Karimi, H.R. Sliding mode control for nonlinear stochastic singular semi-Markov jump systems. IEEE Trans. Autom. Control 2020, 65, 361–368. [Google Scholar] [CrossRef]
- Dorato, P. An Overview of Finite-Time Stability; Springer: Boston, MA, USA, 2006. [Google Scholar]
- Amato, F.; Ambrosino, R.; Ariola, M.; Cosentino, C.; Tommasi, G.D. Finite-Time Stability and Control; Springer: London, UK, 2014. [Google Scholar]
- Sathishkumar, M.; Liu, Y.C. Resilient annular finite-time bounded and adaptive event-triggered control for networked switched systems with deception attacks. IEEE Access 2021, 9, 1. [Google Scholar] [CrossRef]
- Zong, G.D.; Ren, H.L. Guaranteed cost finite-time control for semi-Markov jump systems with event-triggered scheme and quantization input. Appl. Math. Comput. 2019, 29, 5251–5273. [Google Scholar] [CrossRef]
- Sakthivel, R.; Sathishkumar, M.; Faris, A.; Yong, R. Quantized finite-time non-fragile filtering for singular Markovian jump systems with intermittent measurements. Circuits Syst. Signal Process. 2019, 38, 3971–3995. [Google Scholar]
- Wang, Y.; Zhuang, G.; Chen, X.; Wang, Z.; Chen, F. Dynamic event-based finite-time mixed H∞ and passive asynchronous filtering for T–S fuzzy singular Markov jump systems with general transition rates. Nonlinear Anal. Hybrid Syst. 2020, 36, 100874. [Google Scholar] [CrossRef]
- Jiang, B.P.; Karimi, H.R.; Yang, S.C.; Kao, Y.G.; Gao, C.C. Takagi–Sugeno model-based reliable sliding mode control of descriptor systems with semi-Markov parameters: Average dwell time approach. IEEE Trans. Syst. Man Cybern. Syst. 2021, 51, 1549–1558. [Google Scholar] [CrossRef]
- Sathishkumar, M.; Liu, Y.C. Hybrid-triggered reliable dissipative control for singular networked cascade control systems with cyber-attacks. J. Franklin Inst. 2020, 357, 4008–4033. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Liu, C.X.; Mu, X.W. Robust finite-time stabilization of uncertain singular Markovian jump systems. Appl. Math. Modell. 2012, 36, 5109–5121. [Google Scholar] [CrossRef]
- Swishchuk, A. Random Evolutions and Their Applications; Springer: Amsterdam, The Netherlands, 1997. [Google Scholar]
- Jiang, B.P.; Yang, L.J.; Kao, Y.G.; Wu, Z.T. Finite-time H∞ control of stochastic singular systems with partly known transition rates via an optimization algorithm. Int. J. Control Autom. Syst. 2019, 17, 1462–1472. [Google Scholar]
- Xu, S.Y.; Dooren, P.V.; Stefan, R.; Lam, J. Robust stability and stabilization for singular systems with state delay and parameter uncertainty. IEEE Trans. Autom. Control 2002, 47, 1122–1128. [Google Scholar]
- Ma, Y.C.; Kong, C.F. Dissipative asynchronous T-S fuzzy control for singular semi-Markovian jump systems. IEEE Trans. Cybern. 2020, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Jiang, B.P.; Kao, Y.H.; Karimi, H.R.; Gao, C.C. Stability and stabilization for singular switching semi-Markovian jump systems with generally uncertain transition rates. IEEE Trans. Autom. Control 2018, 63, 3919–3926. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, X.; Liu, X. Finite-Time Control of Singular Linear Semi-Markov Jump Systems. Algorithms 2022, 15, 8. https://doi.org/10.3390/a15010008
Ji X, Liu X. Finite-Time Control of Singular Linear Semi-Markov Jump Systems. Algorithms. 2022; 15(1):8. https://doi.org/10.3390/a15010008
Chicago/Turabian StyleJi, Xiaofu, and Xuehua Liu. 2022. "Finite-Time Control of Singular Linear Semi-Markov Jump Systems" Algorithms 15, no. 1: 8. https://doi.org/10.3390/a15010008
APA StyleJi, X., & Liu, X. (2022). Finite-Time Control of Singular Linear Semi-Markov Jump Systems. Algorithms, 15(1), 8. https://doi.org/10.3390/a15010008