A New Algorithm for Simultaneous Retrieval of Aerosols and Marine Parameters
Abstract
:1. Introduction
2. Data and Methods
2.1. MODIS Instrument
2.2. Inherent Optical Properties
2.2.1. Atmospheric Aerosol Model
2.2.2. Bio-Optical Model
2.3. Radial Basis Function Neural Network (RBF-NN)-Training and Evaluation
2.3.1. Radial Basis Function Neural Network
2.3.2. Training and Evaluation
2.4. Inverse Method for Retrieval of Atmosphere-Water Parameters from TOA Radiances
- (i)
- Let denote the list of points in the current simplex, . Then the algorithm orders the points in the simplex from the lowest function value to the highest function value , and at each step in the iteration the algorithm discards the current worst point and accepts another point in the simplex. Or, in case of step (v) below it changes all n points with values above .
- (ii)
- To generate a reflection point, the algorithm generates a point , where , , and then calculates . If , then the algorithm accepts r and terminates the iteration.
- (iii)
- To generate an expansion point for the case in which , the algorithm calculates an expansion point s, given by , and then computes . If , the algorithm accepts s and terminates the iteration. Otherwise, it accepts r and returns to procedure step (ii).
- (iv)
- If , the algorithm performs a contraction between m and the better of and r. Case I: If (i.e., r is better than ), the algorithm calculates , and then computes . If , it accepts c and terminates the iteration. Otherwise, it continues with step (v). Case II: If , it calculates and computes . If , it accepts and terminates the iteration. Otherwise, it continues with step (v).
- (v)
- To generate a shrinkage point, the algorithm calculates the n points and computes , . The simplex at the next iteration is , . The iteration continues until the set criterion is fulfilled
3. Results and Discussion
4. Conclusions
5. Final Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gordon, H.R.; Wang, M. Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: A preliminary algorithm. Appl. Opt. 1994, 33, 443–452. [Google Scholar] [CrossRef] [PubMed]
- Gordon, H.R. Atmospheric correction of ocean color imagery in the Earth Observing System era. J. Geophy. Res. 1997, 102, 17081–17106. [Google Scholar] [CrossRef]
- Antoine, D.; Morel, A. A multiple scattering algorithm for atmospheric correction of remotely sensed ocean colour (MERIS instrument): Principle and implementation for atmospheres carrying various aerosols including absorbing ones. Int. J. Remote Sens. 1999, 20, 1875–1916. [Google Scholar] [CrossRef]
- Carder, K.L.; Chen, F.R.; Cannizzaro, J.P.; Campbell, J.W.; Mitchell, B.G. Performance of the MODIS semi-analytical ocean color algorithm for chlorophyll-a. Adv. Space Res. 2004, 33, 1152–1159. [Google Scholar] [CrossRef]
- Doerffer, R.; Fischer, J. Concentrations of chlorophyll, suspended matter, and gelbstoff in case II waters derived from satellite coastal zone color scanner data with inverse modeling methods. J. Geophys. Res. 1994, 99, 7457–7466. [Google Scholar] [CrossRef]
- Fischer, J.; Doerffer, R. An inverse technique for remote detection of suspended matter, phytoplankton and yellow substance from CZCS measurements. Adv. Space Res. 1987, 7, 21–26. [Google Scholar] [CrossRef]
- Siegel, D.A.; Wang, M.; Maritorena, S.; Robinson, W. Atmospheric Correction of Satellite Ocean Color Imagery: The Black Pixel Assumption. Appl. Opt. 2000, 39, 3582–3591. [Google Scholar] [CrossRef] [PubMed]
- Hovis, W.A.; Clark, D.K.; Anderson, F.; Austin, R.W.; Wilson, W.H.; Baker, E.T.; Ball, D.; Gordon, H.R.; Mueller, J.L.; El-Sayed, S.Z.; et al. Nimbus-7 Coastal Zone Color Scanner: System Description and Initial Imagery. Science 1980, 210, 60–63. [Google Scholar] [CrossRef]
- Chomko, R.M.; Gordon, H.R. Atmospheric correction of ocean color imagery: Use of the Junge power-law aerosol size distribution with variable refractive index to handle aerosol absorption. Appl. Opt. 1998, 37, 5560–5572. [Google Scholar] [CrossRef]
- Gordon, H.R.; Du, T.; Zhang, T. Remote sensing of ocean color and aerosol properties: Resolving the issue of aerosol absorption. Appl. Opt. 1997, 36, 8670–8684. [Google Scholar] [CrossRef]
- Frette, Ø.; Stamnes, J.J.; Stamnes, K. Optical Remote Sensing of Marine Constituents in Coastal Waters: A Feasibility Study. Appl. Opt. 1998, 37, 8318–8326. [Google Scholar] [CrossRef] [PubMed]
- Stamnes, K.; Li, W.; Yan, B.; Eide, H.; Barnard, A.; Pegau, W.S.; Stamnes, J.J. Accurate and self-consistent ocean Color Algorithm: Simultaneous Retrieval of Aerosol Optical Properties and Chlorophyll Concentrations. Appl. Opt. 2003, 42, 939–951. [Google Scholar] [CrossRef] [PubMed]
- Gordon, H.; Brown, O.B.; Evans, R.H.; Brown, J.W.; Smith, R.C.; Baker, K.S.; Clark, D.K. A semianalytic radiance model of ocean color. J. Geophys. Res. 1988, 93, 10909–10924. [Google Scholar] [CrossRef]
- Jin, Z.; Stamnes, K. Radiative transfer in nonuniformly refracting layered media: Atmosphere-ocean system. Appl. Opt. 1994, 33, 431–442. [Google Scholar] [CrossRef]
- Yan, B.; Stamnes, K.; Li, W.; Chen, B.; Stamnes, J.J.; Tsay, S.C. Pitfalls in atmospheric correction of ocean color imagery: How should aerosol optical properties be computed? Appl. Opt. 2002, 41, 412–423. [Google Scholar] [CrossRef] [PubMed]
- Chomko, R.M.; Gordon, H.R.; Maritorena, S.; Siegel, D.A. Simultaneous retrieval of oceanic and atmospheric parameters for ocean color imagery by spectral optimization: A validation. Remote Sens. Environ. 2003, 84, 208–220. [Google Scholar] [CrossRef]
- Garver, S.A.; Siegel, D.A. Inherent optical property inversion of ocean color spectra and its biogeochemical interpretation: 1. Time series from the Sargasso Sea. J. Geophys. Res. 1997, 102, 18607–18625. [Google Scholar] [CrossRef]
- Steinmetz, F.; Deschamps, P.Y.; Ramon, D. Atmospheric correction in presence of sun glint: Application to MERIS. Opt. Express 2011, 19, 9783–9800. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Stamnes, K.; Spurr, R.; Stamnes, J.J. Simultaneous retrieval of aerosol and ocean properties by optimal estimation: SeaWiFS case studies for the Santa Barbara Channel. Int. J. Remote Sens. 2008, 29, 5689–5698. [Google Scholar] [CrossRef]
- Spurr, R.; Stamnes, K.; Eide, H.; Li, W.; Zhang, K.; Stamnes, J.J. Simultaneous retrieval of aerosols and ocean properties: A classic inverse modeling approach. I. Analytic Jacobians from the linearized CAO-DISORT model. J. Quant. Spectrosc. Radiat. Transf. 2007, 104, 428–449. [Google Scholar] [CrossRef]
- Tanaka, A.; Kishino, M.; Doerffer, R.; Schiller, H.; Oishi, T.; Kubota, T. Development of a neural network algorithm for retrieving concentrations of chlorophyll, suspended matter and yellow substance from radiance data of the ocean color and temperature scanner. J. Oceanogr. 2004, 60, 519–530. [Google Scholar] [CrossRef]
- Zell, A.; Mache, N.; Hübner, R.; Mamier, G.; Vogt, M.; Schmalzl, M.; Herrmann, K.U. SNNS (Stuttgart Neural Network Simulator). In Neural Network Simulation Environments; Springer: Boston, MA, USA, 1994; pp. 165–186. [Google Scholar]
- Jamet, C.; Thiria, S.; Moulin, C.; Crépon, M. Use of a neurovariational inversion for retrieving oceanic and atmospheric constituents from ocean color imagery: A feasibility study. J. Atmos. Ocean. Tech. 2005, 22, 460–475. [Google Scholar] [CrossRef]
- Junge, C.E. Atmospheric Chemistry. Adv. Geophy. 1958, 4, 1–108. [Google Scholar]
- Brajard, J.; Jamet, C.; Moulin, C.; Thiria, S. Use of a neuro-variational inversion for retrieving oceanic and atmospheric constituents from satellite ocean colour sensor: Application to absorbing aerosols. Neural Netw. 2006, 19, 178–185. [Google Scholar] [CrossRef]
- Schiller, H.; Doerffer, R. Neural network for emulation of an inverse model operational derivation of Case II water properties from MERIS data. Int. J. Remote Sens. 1999, 20, 1735–1746. [Google Scholar] [CrossRef]
- Stamnes, K.; Li, W.; Fan, Y.; Hamre, B.; Frette, Ø.; Folkestad, A.; Sørensen, K.; Stamnes, J.J. A new algorithm for simultaneous retrieval of aerosol and marine parameters in coastal environments. AIP Conf. Proc. 2013, 1531, 919–922. [Google Scholar] [CrossRef] [Green Version]
- Nelder, J.A.; Mead, R. A Simplex Method for Function Minimization. Comput. J. 1965, 7, 308–313. [Google Scholar] [CrossRef]
- Lagarias, J.C.; Reeds, J.A.; Wright, M.H.; Wright, P.E. Convergence properties of the Nelder-Mead simplex method in low dimensions. SIAM J. Optim. 1998, 9, 112–147. [Google Scholar] [CrossRef] [Green Version]
- Xiong, X.; Barnes, W. An overview of MODIS radiometric calibration and characterization. Adv. Atmos. Sci. 2006, 23, 69–79. [Google Scholar] [CrossRef]
- Barnes, W.; Pagano, T.S.; Salomonson, V.V. Prelaunch characteristics of the Moderate Resolution Imaging Spectroradiometer (MODIS) on EOS-AM1. Geosc. Remote Sens. 1998, 36, 1088–1100. [Google Scholar] [CrossRef] [Green Version]
- Hamre, B.; Stamnes, S.; Stamnes, K.; Stamnes, J.J. A Versatile Tool for Radiative Transfer Simulations in the Coupled Atmosphere-Ocean System: Introducing AccuRT; Ocean Optics XXII: Portland, ME, USA, 2014. [Google Scholar]
- Stamnes, K.; Hamre, B.; Stamnes, S.; Chen, N.; Fan, Y.; Li, W.; Lin, Z.; Stamnes, J. Progress in forward-inverse modeling based on radiative transfer tools for coupled atmosphere-snow/ice-ocean systems: A review and description of the accurt model. Appl. Sci. 2018, 8, 2682. [Google Scholar] [CrossRef] [Green Version]
- Holben, B.N.; Eck, T.F.; Slutsker, I.; Tanré, D.; Buis, J.P.; Setzer, A.; Vermote, E.; Reagan, J.A.; Kaufman, Y.J.; Nakajima, T.; et al. AERONET-A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ. 1998, 66, 1–16. [Google Scholar] [CrossRef]
- Holben, B.N.; Tanré, D.; Smirnov, A.; Eck, T.F.; Slutsker, I.; Abuhassan, N.; Newcomb, W.W.; Schafer, J.S.; Chatenet, B.; Lavenu, F.; et al. An emerging ground-based aerosol climatology: Aerosol optical depth from AERONET. J. Geophys. Res. 2001, 106, 12067–12097. [Google Scholar] [CrossRef]
- Ahmad, Z.; Franz, B.A.; McClain, C.R.; Kwiatkowska, E.J.; Werdell, J.; Shettle, E.P.; Holben, B.N. New aerosol models for the retrieval of aerosol optical thickness and normalized water-leaving radiances from the SeaWiFS and MODIS sensors over coastal regions and open oceans. Appl. Opt. 2010, 49, 5545–5560. [Google Scholar] [CrossRef]
- Coastcolour. Round Robin Protocal; Version 1.2; Brockmann Consult: Hamburg, Germany, 2010. [Google Scholar]
- Babin, M.; Stramski, D.; Ferrari, G.M.; Claustre, H.; Bricaud, A.; Obolensky, G.; Hoepffner, N. Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe. J. Geophys. Res. 2003, 108. [Google Scholar] [CrossRef]
- Bricaud, A.; Morel, A.; Babin, M.; Allali, K.; Claustre, H. Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: Analysis and implications for bio-optical models. J. Geophys. Res. 1998, 103, 31033–31044. [Google Scholar] [CrossRef]
- Babin, M.; Morel, A.; Fournier-Sicre, V.; Fell, F.; Stramski, D. Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration. Limnol. Oceanogr. 2003, 48, 843–859. [Google Scholar] [CrossRef]
- Loisel, H.; Morel, A. Light scattering and chlorophyll concentration in case 1 waters: A reexamination. Limnol. Oceanogr. 1998, 43, 847–858. [Google Scholar] [CrossRef] [Green Version]
- Morel, A.; Antoine, D.; Gentili, B. Bidirectional reflectance of oceanic waters: Accounting for Raman emission and varying particle scattering phase function. Appl. Opt. 2002, 41, 6289–6306. [Google Scholar] [CrossRef]
- Broomhead, D.S.; Lowe, D. Radial Basis Functions, Multi-Variable Functional Interpolation and Adaptive Networks; Technical Report; DTIC Document; DTIC: Fort Belvoir, VA, USA, 1988. [Google Scholar]
- Fan, L.; Li, W.; Dahlback, A.; Stamnes, J.J.; Stamnes, S.; Stamnes, K. New neural-network-based method to infer total ozone column amounts and cloud effects from multi-channel, moderate bandwidth filter instruments. Opt. Express 2014, 22, 19595–19609. [Google Scholar] [CrossRef]
- Bors, A.G. Introduction of the radial basis function (rbf) networks. In Online Symposium for Electronics Engineers; DSP Algorithms: San Jose, CA, USA, 2001; Number 1; pp. 1–7. [Google Scholar]
- Nima, C.; Frette, Ø.; Hamre, B.; Stamnes, J.J.; Chen, Y.C.; Sørensen, K.; Norli, M.; Lu, D.; Xing, Q.; Muyimbwa, D.; et al. CDOM absorption properties of natural water bodies along extreme environmental gradients. Water 2019, 11, 1988. [Google Scholar] [CrossRef] [Green Version]
- Wright, S.W.; Jeffrey, S.W.; Mantoura, R.F.C. Phytoplankton Pigments in Oceanography: Guidelines to Modern Methods; UNESCO Pub.: Paris, France, 2005. [Google Scholar]
- Hagan, M.T.; Demuth, H.B.; Beale, M.H. Neural Network Design; PWS Publishing: Boston, MA, USA, 1996; Volume 1. [Google Scholar]
- Principe, J.C.; Euliano, N.R.; Lefebvre, W.C. Neural and Adaptive Systems: Fundamentals through Simulations; John Wiley Sons: New York, NY, USA, 2000; Volume 119, p. 514. [Google Scholar]
- Fan, Y.; Li, W.; Gatebe, C.K.; Jamet, C.; Zibordi, G.; Schroeder, T.; Stamnes, K. Atmospheric correction over coastal waters using multilayer neural networks. Remote Sens. Environ. 2017, 199, 218–240. [Google Scholar] [CrossRef]
- Fan, Y.; Li, W.; Chen, N.; Ahn, J.H.; Park, Y.J.; Kratzer, S.; Schroeder, T.; Ishizaka, J.; Chang, R.; Stamnes, K. OC-SMART: A machine learning based data analysis platform for satellite ocean color sensors. Remote Sens. Environ. 2021, 253, 112236. [Google Scholar] [CrossRef]
- Chen, N.; Li, W.; Gatebe, C.; Tanikawa, T.; Hori, M.; Shimada, R.; Aoki, T.; Stamnes, K. New neural network cloud mask algorithm based on radiative transfer simulations. Remote Sens. Environ. 2018, 219, 62–71. [Google Scholar] [CrossRef] [Green Version]
Primary Use | Band | Bandwidth | Center | Spectral | Required |
---|---|---|---|---|---|
(nm) | Wavelength (nm) | Radiance | SNR | ||
Land, cloud, | 3 | 459–479 | 465.6 | 35.3 | 243 |
aerosol properties | 4 | 545–565 | 553.6 | 29.0 | 228 |
8 | 405–420 | 411.3 | 44.9 | 880 | |
9 | 438–448 | 442.0 | 41.9 | 838 | |
10 | 483–493 | 486.9 | 32.1 | 802 | |
Ocean color, | 11 | 526–536 | 529.6 | 27.9 | 754 |
phytoplankton, | 12 | 546–556 | 546.8 | 21.0 | 750 |
biogeochemistry | 13 | 662–672 | 665.5 | 9.5 | 910 |
14 | 673–683 | 676.8 | 8.7 | 1087 | |
15 | 743–753 | 746.4 | 10.2 | 586 | |
16 | 862–877 | 866.2 | 6.2 | 516 |
Testing Data Set | Training Data Set | |||||||
---|---|---|---|---|---|---|---|---|
Solar Zenith Angle | ||||||||
Retrieved Parameter | 45 | 53 | 63 | 75 | 45 | 53 | 63 | 75 |
CDOM | 0.97 | 0.82 | 0.72 | 0.64 | 1.00 | 0.80 | 0.97 | 0.84 |
Chlorophyll Concentration | 0.98 | 0.78 | 0.82 | 0.73 | 1.00 | 0.95 | 0.99 | 0.97 |
Mineral Concentration | 1.00 | 0.94 | 0.93 | 0.96 | 1.00 | 0.67 | 0.96 | 0.87 |
Aerosol fine-mode fraction | 0.82 | 0.67 | 0.93 | 0.91 | 1.00 | 0.98 | 1.00 | 1.00 |
Aerosol volume fraction | 0.97 | 0.87 | 0.92 | 0.92 | 0.99 | 0.82 | 0.97 | 0.94 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ssenyonga, T.; Frette, Ø.; Hamre, B.; Stamnes, K.; Muyimbwa, D.; Ssebiyonga, N.; Stamnes, J.J. A New Algorithm for Simultaneous Retrieval of Aerosols and Marine Parameters. Algorithms 2022, 15, 4. https://doi.org/10.3390/a15010004
Ssenyonga T, Frette Ø, Hamre B, Stamnes K, Muyimbwa D, Ssebiyonga N, Stamnes JJ. A New Algorithm for Simultaneous Retrieval of Aerosols and Marine Parameters. Algorithms. 2022; 15(1):4. https://doi.org/10.3390/a15010004
Chicago/Turabian StyleSsenyonga, Taddeo, Øyvind Frette, Børge Hamre, Knut Stamnes, Dennis Muyimbwa, Nicolausi Ssebiyonga, and Jakob J. Stamnes. 2022. "A New Algorithm for Simultaneous Retrieval of Aerosols and Marine Parameters" Algorithms 15, no. 1: 4. https://doi.org/10.3390/a15010004
APA StyleSsenyonga, T., Frette, Ø., Hamre, B., Stamnes, K., Muyimbwa, D., Ssebiyonga, N., & Stamnes, J. J. (2022). A New Algorithm for Simultaneous Retrieval of Aerosols and Marine Parameters. Algorithms, 15(1), 4. https://doi.org/10.3390/a15010004