Optimization of Fiber-Reinforced Polymer Bars for Reinforced Concrete Column Using Nonlinear Finite Element Algorithms
Abstract
1. Introduction
2. Materials and Methods
2.1. Finite Element Modeling and Experimental Verification
2.2. Numerical Development of the Models
3. Seismic Parameters Model Development
4. Results (Finite-Element Analysis)
5. Discussion
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xavier, H.F.B. Analysis of Reinforced Concrete Frames Exposed to Fire: Based on Advanced Calculation Methods. Available online: https://repositorio-aberto.up.pt/bitstream/10216/58515/1/000136907.pdf (accessed on 20 December 2021).
- Dilek, U. Assessment of fire damage to a reinforced concrete structure during construction. J. Perform. Constr. Facil. 2007, 21, 257–263. [Google Scholar] [CrossRef]
- Yan, Z.-G.; Shen, Y.; Zhu, H.H.; Li, X.J.; Lu, Y. Experimental investigation of reinforced concrete and hybrid fibre reinforced concrete shield tunnel segments subjected to elevated temperature. Fire Saf. J. 2015, 71, 86–99. [Google Scholar] [CrossRef]
- Soroushnia, S.; Tafreshi, S.T.; Omidinasab, F.; Beheshtian, N.; Soroushnia, S. Seismic performance of RC elevated water tanks with frame staging and exhibition damage pattern. ProcediaEng. 2011, 14, 3076–3087. [Google Scholar] [CrossRef]
- Sezen, H.; Whittaker, A.S.; Elwood, K.J.; Mosalam, K.M. Performance of reinforced concrete buildings during the August 17, 1999 Kocaeli, Turkey earthquake, and seismic design and construction practise in Turkey. Eng. Struct. 2003, 25, 103–114. [Google Scholar] [CrossRef]
- Murat, O. Field reconnaissance of the October 23, 2011, Van, Turkey, earthquake: Lessons from structural damages. J. Perform. Constr. Facil. 2013, 29, 04014125. [Google Scholar] [CrossRef]
- Ramesht, M.H.; Tavasani, M.A.M. A Case Study on Corrosion in Concrete Floating Docks in Qeshm Port. Procedia Eng. 2013, 54, 109–116. [Google Scholar] [CrossRef][Green Version]
- Nakhostin, E.; Kenny, S.; Sivathayalan, S. Buried Corrugated Steel Culvert Failure Mechanisms Due to Environmental Deteriorations. In Proceedings of the International Conference on Sustainable Infrastructure 2019, Los Angeles, CA, USA, 6–9 November 2019; pp. 29–40. [Google Scholar]
- Nakhostin, E.; Kenny, S.; Sivathayalan, S. Numerical performance assessment of buried corrugated metal culvert subject to service load conditions. Can. J. Civ. Eng. 2021, 48, 99–114. [Google Scholar] [CrossRef]
- Sivakumar, A.; Santhanam, M. A quantitative study on the plastic shrinkage cracking in high strength hybrid fibre reinforced concrete. Cem. Concr. Compos. 2007, 29, 575–581. [Google Scholar] [CrossRef]
- Sarray, A.A. The Deterioration of Concrete in Wastewater Treatment Plants. Available online: http://i-rep.emu.edu.tr:8080/jspui/bitstream/11129/1340/1/SarrayAnmar.pdf (accessed on 15 December 2021).
- Yan, Z.-G.; Zhu, H.-H.; Ju, J.W.; Ding, W.-Q. Full-scale fire tests of RC metro shield TBM tunnel linings. Constr. Build. Mater. 2012, 36, 484–494. [Google Scholar] [CrossRef]
- Xu, H.; Zhao, Y.-X.; Cui, L.; Xu, B. Sulphate attack resistance of high-performance concrete under compressive loading. J. Zhejiang Univ. Sci. A 2013, 14, 459–468. [Google Scholar] [CrossRef]
- Alam, B.; Ashraf, M.; Shahzada, K.; Afzal, S. Sulphate attack in high-performance concrete-a review. J. Adv. Struct. Geotech. Eng. 2012, 1, 15–18. [Google Scholar]
- Freitag, S.A.; Bruce, S.M.; Shayan, A. Concrete Pile Durability in South Island Bridges; Research Report 454; NZ Transport Agency: South Island, New Zealand, 2011. [Google Scholar]
- Folliard, K.J.; Thomas, M.D.A.; Fournier, B.; Kurtis, K.E.; Ideker, J.H. Interim Recommendations for the Use of Lithium to Mitigate or Prevent Alkali-Silica Reaction (ASR); US Department of Transportation: Washington, DC, USA, 2006. [Google Scholar]
- Farny, J.A.; Kosmatka, S.H. Diagnosis and Control of Alkali-Aggregate Reactions in Concrete. Available online: https://www.cement.org/docs/default-source/fc_concrete_technology/is413-diagnosis-and-control-of-alkali-aggregate-reactions-in-concrete.pdf (accessed on 15 December 2021).
- Jana, D. Concrete scaling–a critical review. In Proceedings of the 29th Conference on Cement Microscopy, Quebec, QC, Canada, 20–24 May 2007. [Google Scholar]
- Portland Cement Association. Concrete Slab Surface Defects: Causes, Prevention, Repair; Portland Cement Association: Skokie, IL, USA, 2001. [Google Scholar]
- Song, G.; Shayan, A. Corrosion of Steel in Concrete: Causes, Detection and Prediction: A State-of-the-Art Review; The Australian Road Research Board (ARRB): Melbourne, Australia, 1998. [Google Scholar]
- Jiang, C.; Wu, Y.-F.; Dai, M.-J. Degradation of steel-to-concrete bond due to corrosion. Constr. Build. Mater. 2018, 158, 1073–1080. [Google Scholar] [CrossRef]
- François, R.; Laurens, S.; Deby, F. 1—Steel Corrosion in Reinforced Concrete. In Corrosion and Its Consequences for Reinforced Concrete Structures; François, R., Laurens, S., Deby, F., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 1–41. [Google Scholar]
- Song, Y.; Wightman, E.; Tian, Y.; Jack, K.; Li, X.; Zhong, H.; Bond, P.; Yuan, Z.; Jiang, G. Corrosion of reinforcing steel in concrete sewers. Sci. Total Environ. 2019, 649, 739–748. [Google Scholar] [CrossRef] [PubMed]
- Poursaee, A. 2—Corrosion of steel in concrete structures. In Corrosion of Steel in Concrete Structures; Poursaee, A., Ed.; Woodhead Publishing: Oxford, UK, 2016; pp. 19–33. [Google Scholar]
- Sen, R.; Mullins, G. Application of FRP composites for underwater piles repair. Compos. Part B Eng. 2007, 38, 751–758. [Google Scholar] [CrossRef]
- Xiao, Y.; Ma, R. Seismic retrofit of RC circular columns using prefabricated composite jacketing. J. Struct. Eng. 1997, 123, 1357–1364. [Google Scholar] [CrossRef]
- Seible, F.; Priestley, M.J.N.; Hegemier, G.A.; Innamorato, D. Seismic retrofit of RC columns with continuous carbon fiber jackets. J. Compos. Constr. 1997, 1, 52–62. [Google Scholar] [CrossRef]
- Wang, Y.-C.; Hsu, K. Design of FRP-wrapped reinforced concrete columns for enhancing axial load carrying capacity. Compos. Struct. 2008, 82, 132–139. [Google Scholar] [CrossRef]
- Colomb, F.; Tobbi, H.; Ferrier, E.; Hamelin, P. Seismic retrofit of reinforced concrete short columns by CFRP materials. Compos. Struct. 2008, 82, 475–487. [Google Scholar] [CrossRef]
- Saadatmanesh, H.; Ehsani, M.R.; Jin, L. Repair of earthquake-damaged RC columns with FRP wraps. ACI Struct. J. 1997, 94, 206–215. [Google Scholar]
- Ma, C.-K.; Apandi, N.M.; Sofrie, C.S.Y.; Ng, J.H.; Lo, W.H.; Awang, A.Z.; Omar, W. Repair and rehabilitation of concrete structures using confinement: A review. Constr. Build. Mater. 2017, 133, 502–515. [Google Scholar] [CrossRef]
- Mullins, G.; Sen, R.; Suh, K.; Winters, D. Underwater FRP repair of prestressed piles in the Allen Creek Bridge in the city of clearwater. ASCE. J. Composites Constr. 2005, 9, 136–146. [Google Scholar] [CrossRef]
- Sen, R.; Mullins, G.; Suh, K.; Winters, D. FRP application in underwater repair of corroded piles. Spec. Publ. 2005, 230, 1139–1156. [Google Scholar]
- Mullins, G.; Sen, R.; Suh, K.S.; Winters, D. A demonstration of underwater FRP repair. Concr. Int. 2006, 28, 70–73. [Google Scholar]
- Yalcin, C.; Kaya, O.; Sinangil, M. Seismic retrofitting of R/C columns having plain rebars using CFRP sheets for improved strength and ductility. Constr. Build. Mater. 2008, 22, 295–307. [Google Scholar] [CrossRef]
- Tu, J.; Gao, K.; He, L.; Li, X. Experimental study on the axial compression performance of GFRP-reinforced concrete square columns. Adv. Struct. Eng. 2019, 22, 1554–1565. [Google Scholar] [CrossRef]
- MugahedAmran, Y.H.; Alyousef, R.; Rashid, R.S.; Alabduljabbar, H.; Hung, C.C. Properties and applications of FRP in strengthening RC structures: A review. Structures 2018, 16, 208–238. [Google Scholar] [CrossRef]
- Antonio De Luca, F.M.; Antonio, N. Behavior of Full-Scale Glass Fiber-Reinforced Polymer Reinforced Concrete Columns under Axial Load. Struct. J. 2010, 107, 589. [Google Scholar]
- HanyTobbi, A.S.F.; Brahim, B. Concrete Columns Reinforced Longitudinally and Transversally with Glass Fiber-Reinforced Polymer Bars. Struct. J. 2012, 109, 551–558. [Google Scholar]
- Pantelides, C.P.; Gibbons, M.E.; Reaveley, L.D. Axial Load Behavior of Concrete Columns Confined with GFRP Spirals. J. Compos. Constr. 2013, 17, 305–313. [Google Scholar] [CrossRef]
- HanyTobbi, A.S.F.; Brahim, B. Behavior of Concentrically Loaded Fiber-Reinforced Polymer Reinforced Concrete Columns with Varying Reinforcement Types and Ratios. Struct. J. 2014, 111, 375–386. [Google Scholar]
- Afifi, M.Z.; Mohamed, H.M.; Benmokrane, B. Strength and Axial Behavior of Circular Concrete Columns Reinforced with CFRP Bars and Spirals. J. Compos. Constr. 2014, 18, 04013035. [Google Scholar] [CrossRef]
- Sarasini, F.; Tirillò, J.; Ferrante, L.; Valente, M.; Valente, T.; Lampani, L.; Gaudenzi, P.; Cioffi, S.; Iannace, S.; Sorrentino, L. Drop-weight impact behaviour of woven hybrid basalt–carbon/epoxy composites. Compos. Part B Eng. 2014, 59, 204–220. [Google Scholar] [CrossRef]
- Chen, Y.; Davalos, J.F.; Ray, I. Durability prediction for GFRP reinforcing bars using short-term data of accelerated aging tests. J. Compos. Constr. 2006, 10, 279–286. [Google Scholar] [CrossRef]
- Bakis, C.E.; Bank, L.C.; Brown, V.; Cosenza, E.; Davalos, J.F.; Lesko, J.J.; Machida, A.; Rizkalla, S.H.; Triantafillou, T.C. Fiber-reinforced polymer composites for construction—State-of-the-art review. J. Compos. Constr. 2002, 6, 73–87. [Google Scholar] [CrossRef]
- Ou, Y.; Zhu, D.; Zhang, H.; Yao, Y.; Mobasher, B.; Huang, L. Mechanical properties and failure characteristics of CFRP under intermediate strain rates and varying temperatures. Compos. Part B Eng. 2016, 95, 123–136. [Google Scholar] [CrossRef]
- Rocca, S. Experimental and Analytical Evaluation of FRP-Confined Large Size Reinforced Concrete Columns. Ph.D. Thesis, University of Missouri, Rolla, MO, USA, 2007. [Google Scholar]
- SayyarRoudsari, S.; Hamoush, S.A.; Soleimani, S.M.; Madandoust, R. Evaluation of large-size reinforced concrete columns strengthened for axial load using fiber reinforced polymers. Eng. Struct. 2019, 178, 680–693. [Google Scholar] [CrossRef]
- ASTM A370-03a; Standard Test Methods and Definitions for Mechanical Testing of Steel Products. ASTM: West Conshohocken, PA, USA, 2003.
- Building Code Requirements for Structural Concrete: 2011. Available online: https://www.usb.ac.ir/FileStaff/5526_2020-1-25-11-12-7.pdf (accessed on 15 December 2021).
- Campbell, F.C. Structural Composite Materials; ASM International: Almere, The Netherlands, 2010. [Google Scholar]
- Standard No. 2800; Iranian Code of Practice for Seismic Resistant Design of Buildings. BHRC: Tehran, Iran, 2005.
- Mahmoudi, M.; Zaree, M. Determination the response modification factors of buckling restrained braced frames. Procedia Eng. 2013, 54, 222–231. [Google Scholar] [CrossRef]
- Fajfar, P. Structural analysis in earthquake engineering–a breakthrough of simplified non-linear methods. In Proceedings of the 12th European Conference on Earthquake Engineering, London, UK, 9–13 September 2002. [Google Scholar]
- Asgarian, B.; Shokrgozar, H. BRBF response modification factor. J. Constr. Steel Res. 2009, 65, 290–298. [Google Scholar] [CrossRef]
- Cican, G.; Deaconu, M.; Mirea, R.; Ceatra, L.; Cretu, M.; Dobre, T. Investigating the Use of Recycled Pork Fat-Based Biodiesel in Aviation Turbo Engines. Processes 2020, 8, 1196. [Google Scholar] [CrossRef]
- Petrescu, F.I.T.; Petrescu, R.V.V. Nuclear hydrogen structure and dimensions. Int. J. Hydrog. Energy 2019, 44, 10833–10837. [Google Scholar] [CrossRef]
- Petrescu, R.V.V.; Machín, A.; Fontánez, K.; Arango, J.C.; Márquez, F.M.; Petrescu, F.I.T. Hydrogen for aircraft power and propulsion. Int. J. Hydrog. Energy 2020, 45, 20740–20764. [Google Scholar] [CrossRef]
- Mirsayar, M.M.; Joneidi, V.A.; Petrescu, R.V.V.; Petrescu, F.I.T.; Berto, F. Extended MTSN criterion for fracture analysis of soda lime glass. Eng. Fract. Mech. 2017, 178, 50–59. [Google Scholar] [CrossRef]
- Petrescu, F.I.T.; Petrescu, R.V.; Mirsayar, M.M. The Computer Algorithm for Machine Equations of Classical Distribution. J. Mater. Eng. Struct. 2017, 4, 193–209. [Google Scholar]
- Petrescu, F.I.T.; Petrescu, R.V.V. An Algorithm to Determining the Gear Efficiency to a Simple Planetary Train. Indep. J. Manag. Prod. 2019, 10, 1392–1404. [Google Scholar] [CrossRef]
Group | Number of Longitudinal Bars | Number of Stirrups at Ordinary Zones | Number of Stirrups at Specific Zones | ||||
---|---|---|---|---|---|---|---|
A1 | N/A * | 1.1 | 31.7 | 6 | 2 | 9 | |
B1 | 2.0 | 1.4 | 30.2 | 6 | 3 | 9 | |
C1 | 1.0 | 1.0 | 32.1 | 8 | 3 | 8 | |
D1 | 1.0 | 1.4 | 30.7 | 12 | 4 | 13 | |
E1 | 1.0 | 0.7 | 32.3 | 4 | 3 | 7 | |
F1 | 1.0 | 1.4 | 31.5 | 4 | 5 | 12 | |
G1 | 1.0 | 2.0 | 31.6 | 26 | 3 | 17 | |
H1 | 2.0 | 2.7 | 30.3 | 24 | 5 | 15 |
Laboratory Results | Finite Element Results | Difference (FEM vs. Laboratory) | ||||
---|---|---|---|---|---|---|
Specimen | Compressive Strength (MPa) | Maximum Axial Strain (mm/mm) | Compressive Strength (MPa) | Maximum Axial Strain (mm/mm) | Compressive Strength (%) | Maximum Axial Strain (%) |
A1 | 26 | 2.94 × 10−3. | 29 | 3.00 × 10−3 | 11.9 | 2.5 |
B1 | 23.94 | 1.60 × 10−3 | 25.1 | 1.50 × 10−3 | 4.9 | −6.6 |
C1 | 26.6 | 3.25 × 10−3 | 27.3 | 3.30 × 10−3 | 2.5 | 1.6 |
D1 | 24.5 | 3.16 × 10−3 | 24.7 | 3.12 × 10−3 | 0.6 | −2.0 |
E1 | 20.4 | 2.20 × 10−3 | 20.55 | 2.13 × 10−3 | 0.4 | 5.3 |
F1 | 26.2 | 7.70 × 10−3 | 24.7 | 7.40 × 10−3 | −7 | −4 |
G1 | 28.5 | 6.99 × 10−3 | 30 | 7.11 × 10−3 | 5.2 | 2.5 |
H1 | - | - | 22.35 | 7.20 × 10−3 | - | - |
Name | Ultimate Stress (MPa) | Failure Strain | Modulus of Elasticity [1] |
---|---|---|---|
CFRP | 3690 | 0.031 | 580 |
GFRP | 1600 | 0.17 | 51 |
Group of Specimens | Steel (S) | CFRP Bars (C) | GFRP Bars (G) | Number of Longitudinal Bars #25 | Optimized CFRP with #12 Bars |
---|---|---|---|---|---|
A | AS | AC | AG | 6 | AO |
B | BS | BC | BG | 6 | BO |
C | CS | CC | CG | 8 | CO |
D | DS | DC | DG | 12 | DO |
E | ES | EC | EG | 4 | EO |
F | FS | FC | FG | 4 | FO |
G | GS | GC | GG | 26 | GO |
H | HS | HC | HG | 24 | HO |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roudsari, S.S.; Ungureanu, L.M.; Soroushnia, S.; Abu-Lebdeh, T.; Petrescu, F.I.T. Optimization of Fiber-Reinforced Polymer Bars for Reinforced Concrete Column Using Nonlinear Finite Element Algorithms. Algorithms 2022, 15, 12. https://doi.org/10.3390/a15010012
Roudsari SS, Ungureanu LM, Soroushnia S, Abu-Lebdeh T, Petrescu FIT. Optimization of Fiber-Reinforced Polymer Bars for Reinforced Concrete Column Using Nonlinear Finite Element Algorithms. Algorithms. 2022; 15(1):12. https://doi.org/10.3390/a15010012
Chicago/Turabian StyleRoudsari, Sajjad Sayyar, Liviu Marian Ungureanu, Soheil Soroushnia, Taher Abu-Lebdeh, and Florian Ion Tiberiu Petrescu. 2022. "Optimization of Fiber-Reinforced Polymer Bars for Reinforced Concrete Column Using Nonlinear Finite Element Algorithms" Algorithms 15, no. 1: 12. https://doi.org/10.3390/a15010012
APA StyleRoudsari, S. S., Ungureanu, L. M., Soroushnia, S., Abu-Lebdeh, T., & Petrescu, F. I. T. (2022). Optimization of Fiber-Reinforced Polymer Bars for Reinforced Concrete Column Using Nonlinear Finite Element Algorithms. Algorithms, 15(1), 12. https://doi.org/10.3390/a15010012