Fixed Point Results on Multi-Valued Generalized (α,β)-Nonexpansive Mappings in Banach Spaces
Abstract
:1. Introduction
2. Preliminaries
- (i)
- is called nonexpensive if
- (ii)
- is called quasi-nonexpensive if and
- (iii)
- is called Suzuki generalized nonexpansive or endowed with condition if
- (iv)
- is called -nonexpensive if there exists such that ,
- (v)
- is called generalized -nonexpansive if exists such that ,
- (vi)
- is called -Reich–Suzuki type nonexpansive if exists such that ,
- (1)
- ,
- (2)
- ,
- (3)
- .Further .
- (1)
- Asymptotic radius of at a point is defined as
- (2)
- Asymptotic radius of with respect to B is defined as
- (3)
- The asymptotic center of with respect to B is defined as
3. Generalized ()-Nonexpansive Multi-Valued Mapping
4. Fixed Point Existence Results
- (a)
- ,
- (b)
- for every we have either or .
5. Convergence Results
6. Example
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Banach, S. Sur les operations dans les ensembles abstraits et leur application aux equations integrales. Fund. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
- Gorniewicz, L. Topological Fixed Point Theory of Multivalued Mappings; Kluwer Academic Pub.: Dordrecht, The Netherlands, 1999. [Google Scholar]
- Nadler, S.B. Multi-valued contraction mappings. Pac. J. Math. 1969, 30, 282–291. [Google Scholar] [CrossRef]
- Browder, F.E. Nonexpansive nonlinear operators in a Banach space. Proc. Natl. Acad. Sci. USA 1965, 54, 1041–1044. [Google Scholar] [CrossRef] [Green Version]
- Gohde, D. Zum Prinzip der Kontraktiven Abbildung. Math. Nachr. 1965, 30, 251–258. [Google Scholar] [CrossRef]
- Kirk, W.A. A fixed point theorem for mappings which do not increase distance. Am. Math. Mon. 1965, 72, 1004–1006. [Google Scholar] [CrossRef] [Green Version]
- Lim, T.C. A fixed point theorem for multivalued nonexpansive mappings in a uniformly convex Banach spaces. Bull. Am. Math. Soc. 1974, 80, 1123–1126. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, T. Fixed point theorems and convergence theorems for some generalized non-expansive mapping. J. Math. Anal. Appl. 2008, 340, 1088–1095. [Google Scholar] [CrossRef] [Green Version]
- Abkar, A.; Eslamian, M. A fixed point theorem for generalized nonexpansive multivalued mappings. Fixed Point Theory 2011, 12, 241–246. [Google Scholar]
- Aoyama, K.; Kohsaka, F. Fixed point theorem for α-non-expansive mappings in Banach spaces. Nonlinear Anal. 2011, 74, 4387–4391. [Google Scholar] [CrossRef]
- Hajisharifi, H.M. On some generalizaton of multivalued nonexpansive mappings. Bull. Iran. Math. Soc. 2020, 46, 557–571. [Google Scholar] [CrossRef]
- Pant, R.; Shukla, R. Approximating fixed points of generalized α-non-expansive mappings in Banach spaces. Numer. Funct. Anal. Optim. 2017, 38, 248–266. [Google Scholar] [CrossRef]
- Iqbal, H.; Abbas, M.; Hussnine, S.M. Existence and approximation of fixed points of multivalued generalized α-nonexpansive mappings in Banach spaces. Numer. Algor. 2019, 85, 1029–1049. [Google Scholar] [CrossRef]
- Pandey, R.; Pant, R.; Rakocevic, V.; Shukla, R. Approximating fixed points of a general class of nonexpansive mappings in Banach spaces with applications. Result Math. 2019, 74, 1–24. [Google Scholar] [CrossRef]
- Maldar, S.; Gursoy, F.; Atalan, Y.; Abbas, M. On a three-step iteration process for multivalued Reich-Suzuki type α-nonexpansive and contractive mappings. J. Appl. Math. Comp. 2021. [Google Scholar] [CrossRef]
- Ullah, K.; Ahmad, J.; de la Sen, M. On generalized nonexpnsive maps in Banach spaces. Computation 2020, 8, 61. [Google Scholar] [CrossRef]
- Mann, W.R. Mean value methods in iteration. Proc. Am. Math. Soc. 1953, 4, 506–510. [Google Scholar] [CrossRef]
- Ishikawa, S. Fixed points by a new iteration method. Proc. Am. Math. Soc. 1974, 44, 147–150. [Google Scholar] [CrossRef]
- Agarwal, R.P.; O’Regon, D.; Sahu, D.R. Iterative construction of fixed points of nearly asymtotically non-expansive mappings. J. Nonlinear Convex Anal. 2007, 8, 61–79. [Google Scholar]
- Phuengrattana, W.; Suantai, S. On the rate of convergence of Mann, Ishikawa, Noor, and SP-iterations for continuous functions on an arbitrary interval. J. Comp. Appl. Math. 2011, 235, 3006–3014. [Google Scholar] [CrossRef] [Green Version]
- Abbas, M.; Nazir, T. A new faster iteration process applied to constrained minimization and feasibility problems. Math. Vesnik 2014, 66, 223–234. [Google Scholar]
- Noor, M.A. New approximation schemes for general variational inequalities. J. Math. Anal. Appl. 2000, 251, 217–229. [Google Scholar] [CrossRef] [Green Version]
- Chugh, R.; Kumar, V.; Kumar, S. Strong convergence of new three step iterative scheme in Banach spaces. Am. J. Comp. Math. 2012, 2, 345–357. [Google Scholar] [CrossRef] [Green Version]
- Sahu, D.R.; Petrusel, A. Strong convergence of iterative methods by strickly pseudocontractive mappings in Banach spaces. Nonlinear Anal. TMA 2011, 74, 6012–6023. [Google Scholar] [CrossRef]
- Thakur, B.S.; Thakur, D.; Postolache, M. A new iterative scheme for numerical reckoning fixed points of Suzuki’s generalized non-expansive mappings. Appl. Math. Comput. 2016, 275, 147–155. [Google Scholar]
- Ullah, K.; Arshad, M. Numerical reckoning fixed points for Suzuki’s generalized nonexpansive mappings via new iteration process. Filomat 2011, 32, 187–196. [Google Scholar] [CrossRef] [Green Version]
- Khatoon, S.; Uddin, I. Convergence analysis of modified Abbas iteration process for two G-nonexpansive mappings. Rend. Circ. Mat. Palermo Ser. 2021, 70, 31–44. [Google Scholar] [CrossRef]
- Wairojjana, N.; Pakkaranang, N.; Pholasa, N. Strong convergence inertial projection algorithm with self-adaptive step size rule for pseudomonotone variational inequalities in Hilbert spaces. Demonstr. Math. 2021, 54, 110–128. [Google Scholar] [CrossRef]
- Gursoy, F.; Karakaya, V. A Picard-S hybrid type iteration method for solving a differential equation with retarted argument. arXiv 2014, arXiv:1403.2546. [Google Scholar]
- Sastry, K.P.R.; Babu, G.V.R. Convergence of Ishikawa iterates for a multivalued mapping with a fixed point. Czechoslov. Math. J. 2005, 55, 817–826. [Google Scholar] [CrossRef] [Green Version]
- Shahzad, N.; Zegeye, H. On Mann and Ishikawa iteration schemes for multi-valued maps in Banach spaces. Nonlinear Anal. 2009, 71, 838–844. [Google Scholar] [CrossRef]
- Song, Y.; Cho, Y.J. Some notes on Ishikawa iteration for multivalued mappings. Bull. Korean Math. Soc. 2011, 48, 575–584. [Google Scholar] [CrossRef]
- Khan, S.H. A Picard-Mann hybrid iterative process. Fixed Point Theory Appl. 2013, 69, 1–10. [Google Scholar] [CrossRef]
- Ullah, K.; Ahmad, J.; Khan, M.S.U.; Muhammad, N. Convergence results of a faster iterative scheme including multi-valued mappings in Banach spaces. Filomat 2021, 35, 1–10. [Google Scholar]
- Schu, J. Weak and strong convergence to fixed points of asymptotically nonexpansive mappings. Bull. Aust. Math. Soc. 1991, 43, 153–159. [Google Scholar] [CrossRef] [Green Version]
- Sentor, H.F.; Dotson, W.G. Approximating fixed points of nonexpansive mappings. Proc. Am. Math. Soc. 1974, 44, 375–380. [Google Scholar] [CrossRef]
- Opial, Z. Weak and strong convergence of the sequence of successive approximations for non-expansive mappings. Bull. Amer. Math. Soc. 1967, 73, 591–597. [Google Scholar] [CrossRef] [Green Version]
Number of Iterations Required to Obtain Fixed Point. | |||||
---|---|---|---|---|---|
Initial Points | M-Iteration | Picard-S | Abbas | Picard–Mann | Noor |
5 | 4 | 5 | 6 | 7 | 53 |
50 | 5 | 6 | 8 | 9 | 57 |
500 | 6 | 7 | 9 | 11 | 63 |
1200 | 7 | 7 | 10 | 11 | 66 |
2000 | 7 | 7 | 10 | 12 | 67 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ullah, K.; Khan, M.S.U.; de la Sen, M. Fixed Point Results on Multi-Valued Generalized (α,β)-Nonexpansive Mappings in Banach Spaces. Algorithms 2021, 14, 223. https://doi.org/10.3390/a14080223
Ullah K, Khan MSU, de la Sen M. Fixed Point Results on Multi-Valued Generalized (α,β)-Nonexpansive Mappings in Banach Spaces. Algorithms. 2021; 14(8):223. https://doi.org/10.3390/a14080223
Chicago/Turabian StyleUllah, Kifayat, Muhammad Safi Ullah Khan, and Manuel de la Sen. 2021. "Fixed Point Results on Multi-Valued Generalized (α,β)-Nonexpansive Mappings in Banach Spaces" Algorithms 14, no. 8: 223. https://doi.org/10.3390/a14080223
APA StyleUllah, K., Khan, M. S. U., & de la Sen, M. (2021). Fixed Point Results on Multi-Valued Generalized (α,β)-Nonexpansive Mappings in Banach Spaces. Algorithms, 14(8), 223. https://doi.org/10.3390/a14080223