Simulation-Optimization Approach for Multi-Period Facility Location Problems with Forecasted and Random Demands in a Last-Mile Logistics Application
Abstract
:1. Introduction
2. Related Work
2.1. System Dynamics Modeling
2.2. Facility Location Problems
2.3. Monte Carlo Simulation
3. Integrated Simulation-Optimization Approach
4. Application in the City of Dortmund
4.1. System Dynamics Simulation Model
4.1.1. Problem Identification
4.1.2. System Conceptualization
4.1.3. Model Formulation
4.1.4. Simulation and Verification
4.1.5. Policy Analysis and Scenario Building
4.2. Multi-Period Facility Location Problem
5. Computational Results and Discussion
5.1. System Dynamics Simulation Model Results
5.2. Generating and Simulating Optimal Configurations
- Consider a uniformly distributed random demand per district during the period for generating the configurations.
- Define and assume that is the medium demand corresponding to the scenario .
- Define a factor to increase the size of the uniform interval as we move forward into future periods.
- Generate the random demand using Equation (8). The expression is useful to increase proportionally to the value of k. In this way, we guarantee that generated configurations differ in size.
- A uniform distribution, according to Equation (10). In this case, .
- A symmetric triangular distribution, according to Equation (11), i.e., the mode equals . To obtain conditions similar to 1, the lower and upper limits of this distribution are calculated assuming that the standard deviation is equal.
- A lognormal distribution, according to Equation (12). Again, the standard deviation is the same as in the point 1 to preserve similar conditions.
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Results Generated by the SDSM for the Horizon Planning in the Proposal Scenarios
Output Parameter | Month | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
Market size (thousands) | ||||||||||||
603 | ||||||||||||
603 | ||||||||||||
603 | ||||||||||||
Potential e-customers (thousands) | ||||||||||||
314 | 320 | |||||||||||
APL users (thousands) | ||||||||||||
48 | 49 | 50 | ||||||||||
68 | ||||||||||||
Number of deliveries (thousands) | ||||||||||||
167 | ||||||||||||
185 | 205 |
Output Parameter | Month | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
Market size (thousands) | ||||||||||||
604 | ||||||||||||
604 | ||||||||||||
604 | ||||||||||||
Potential e-customers (thousands) | ||||||||||||
337 | ||||||||||||
466 | ||||||||||||
APL users (thousands) | ||||||||||||
65 | 67 | |||||||||||
Number of deliveries (thousands) | ||||||||||||
186 | 199 | 208 | ||||||||||
243 |
Output Parameter | Month | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | |
Market size (thousands) | ||||||||||||
605 | 606 | |||||||||||
605 | 606 | |||||||||||
605 | 606 | |||||||||||
Potential e-customers (thousands) | ||||||||||||
429 | 446 | |||||||||||
500 | ||||||||||||
APL users (thousands) | ||||||||||||
58 | ||||||||||||
73 | 75 | |||||||||||
S3 | 82 | 90 | ||||||||||
Number of deliveries (thousands) | ||||||||||||
308 | 327 | |||||||||||
331 | 338 | 345 | 374 |
Appendix B. Number of APLs by Period and Configuration
Output Parameter | Month | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
Number of APLs | ||||||||||||
62 | 64 | 66 | 67 | 69 | 69 | 69 | 69 | 69 | 70 | 70 | 81 | |
69 | 69 | 69 | 69 | 69 | 69 | 70 | 71 | 71 | 71 | 73 | 92 | |
69 | 69 | 70 | 70 | 70 | 71 | 72 | 73 | 73 | 73 | 74 | 101 | |
71 | 71 | 72 | 72 | 72 | 73 | 74 | 75 | 76 | 76 | 76 | 110 | |
72 | 72 | 72 | 74 | 75 | 75 | 75 | 76 | 77 | 80 | 83 | 119 | |
73 | 75 | 75 | 76 | 76 | 76 | 78 | 80 | 82 | 84 | 86 | 130 | |
75 | 76 | 76 | 77 | 77 | 81 | 83 | 83 | 85 | 87 | 90 | 139 | |
76 | 76 | 78 | 80 | 83 | 85 | 88 | 89 | 89 | 90 | 91 | 148 | |
80 | 81 | 83 | 86 | 87 | 89 | 89 | 89 | 90 | 92 | 92 | 153 | |
84 | 87 | 87 | 87 | 90 | 90 | 91 | 93 | 95 | 97 | 99 | 164 |
Output Parameter | Month | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
Number of APLs | ||||||||||||
83 | 86 | 87 | 90 | 91 | 92 | 93 | 95 | 95 | 97 | 97 | 99 | |
94 | 97 | 100 | 100 | 100 | 102 | 104 | 105 | 105 | 106 | 106 | 107 | |
102 | 106 | 108 | 110 | 112 | 112 | 113 | 113 | 113 | 113 | 113 | 113 | |
113 | 113 | 118 | 119 | 119 | 119 | 120 | 120 | 120 | 120 | 120 | 120 | |
124 | 124 | 128 | 129 | 129 | 129 | 129 | 129 | 129 | 129 | 129 | 130 | |
132 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 136 | 136 | |
143 | 144 | 144 | 144 | 144 | 144 | 144 | 144 | 144 | 144 | 144 | 144 | |
149 | 149 | 149 | 149 | 149 | 149 | 149 | 149 | 149 | 149 | 149 | 150 | |
157 | 157 | 157 | 157 | 157 | 157 | 157 | 157 | 157 | 157 | 157 | 157 | |
165 | 165 | 165 | 165 | 165 | 165 | 165 | 165 | 165 | 165 | 165 | 165 |
Output Parameter | Month | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | |
Number of APLs | ||||||||||||
99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | |
107 | 107 | 107 | 107 | 107 | 107 | 107 | 107 | 107 | 107 | 107 | 107 | |
113 | 113 | 113 | 113 | 113 | 113 | 113 | 113 | 113 | 113 | 113 | 113 | |
120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | |
130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | |
135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 135 | 136 | 136 | |
144 | 144 | 144 | 144 | 144 | 144 | 144 | 144 | 144 | 144 | 144 | 144 | |
150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | |
157 | 157 | 157 | 157 | 157 | 157 | 157 | 157 | 157 | 157 | 157 | 157 | |
165 | 165 | 165 | 165 | 165 | 165 | 165 | 165 | 165 | 165 | 165 | 165 |
References
- Gonzalez-Feliu, J. Sustainable Urban Logistics: Planning and Evaluation; ISTE Ltd./John Wiley and Sons Inc.: Hoboken, NJ, USA, 2017. [Google Scholar]
- Boudoin, D.; Morel, C.; Gardat, M. Supply Chains and Urban Logistics Platforms. In Sustainable Urban Logistics: Concepts, Methods and Information Systems; Gonzalez-Feliu, J., Semet, F., Routhier, J., Eds.; Springer: New York, NY, USA, 2013; pp. 1–20. [Google Scholar]
- Moroz, M.; Polkowski, Z. The Last Mile Issue and Urban Logistics: Choosing Parcel Machines in the Context of the Ecological Attitudes of the Y Generation Consumers Purchasing Online. Transp. Res. Procedia 2016, 16, 378–393. [Google Scholar] [CrossRef] [Green Version]
- Zurel, Ö.; van Hoyweghen, L.; Braes, S.; Seghers, A. Parcel Lockers, an Answer to the Pressure on the Last Mile Delivery? In New Business and Regulatory Strategies in the Postal Sector; Parcu, P., Brennan, T., Glass, V., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 299–312. [Google Scholar]
- Verlinde, S.; Rojas, C.; Buldeo Rai, H.; Kin, B.; Macharis, C. E-Consumers and Their Perception of Automated Parcel Stations. In City Logistics 3: Towards Sustainable and Liveable Cities; Taniguchi, E., Thompson, R., Eds.; ISTE Ltd./John Wiley and Sons Inc.: Hoboken, NJ, USA, 2018; pp. 147–160. [Google Scholar]
- Vakulenko, Y.; Hellstrom, D.; Hjort, K. What’s in the Parcel Locker? Exploring Customer Value in E-commerce Last Mile Delivery. J. Bus. Res. 2018, 88, 421–427. [Google Scholar] [CrossRef]
- Iwan, S.; Kijewska, K.; Lemke, J. Analysis of Parcel Lockers’ Efficiency as the Last Mile Delivery Solution—The Results of the Research in Poland. Transp. Res. Procedia 2016, 12, 644–655. [Google Scholar] [CrossRef] [Green Version]
- Faulin, J.; Grasman, S.; Juan, A.; Hirsch, P. Sustainable Transportation and Smart Logistics: Decision-Making Models and Solutions; Elsevier: Oxford, UK, 2018. [Google Scholar]
- Guerrero, J.; Dıaz-Ramırez, J. A Review on Transportation Last-mile Network Design and Urban Freight Vehicles. In Proceedings of the 2017 International Conference on Industrial Engineering and Operations Management, Bristol, UK, 24–25 July 2017; pp. 533–552. [Google Scholar]
- Jlassi, S.; Tamayo, S.; Gaudron, A. Simulation Applied to Urban Logistics: A State of the Art. In City Logistics 3: Towards Sustainable and Liveable Cities; Taniguchi, E., Thompson, R., Eds.; ISTE Ltd./John Wiley and Sons Inc.: Hoboken, NJ, USA, 2018; pp. 32–58. [Google Scholar]
- Morganti, E.; Dablanc, L.; Fortin, F. Final Deliveries for Online Shopping: The Deployment of Pickup Point Networks in Urban and Suburban Areas. Res. Transp. Bus. Manag. 2014, 11, 23–31. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Feliu, J. (Ed.) Logistics and Transport Modeling in Urban Goods Movement; IGI Global: Hershey, PA, USA, 2019. [Google Scholar]
- Figueira, G.; Almada-Lobo, B. Hybrid Simulation-Optimization Methods: A Taxonomy and Discussion. Simul. Model. Pract. Theory 2014, 46, 118–134. [Google Scholar] [CrossRef] [Green Version]
- Crainic, T.G.; Perboli, G.; Rosano, M. Simulation of Intermodal Freight Transportation Systems: A Taxonomy. Eur. J. Oper. Res. 2018, 270, 401–418. [Google Scholar] [CrossRef]
- Martinez-Moyano, I.; Macal, C. A Primer for Hydrid Modeling and Simulation. In Proceedings of the 2016 Winter Simulation Conference (WSC), Washington, DC, USA, 11–14 December 2016; Roeder, T.M., Frazier, P.I., Szechtman, R., Zhou, E., Huschka, T., Chick, S.E., Eds.; Institute of Electrical and Electronics Engineers, Inc.: Piscataway, NJ, USA, 2016; pp. 133–147. [Google Scholar]
- Ackoff, R.L. Optimization + Objectivity = Optout. Eur. J. Oper. Res. 1977, 1, 1–7. [Google Scholar] [CrossRef]
- Le Bouthillier, A.; Crainic, T.G. A Cooperative Parallel Metaheuristic for the Vehicle Routing Problem with Time Windows. Comput. Oper. Res. 2005, 32, 1685–1708. [Google Scholar] [CrossRef]
- Forrester, J.W. Industrial Dynamics after the First Decade. Manag. Sci. 1968, 14, 398–415. [Google Scholar] [CrossRef] [Green Version]
- Sterman, J. Business Dynamics; Irwin/McGraw-Hill: Boston, MA, USA, 2000. [Google Scholar]
- Taniguchi, E.; Thompson, R.; Yamada, T. Emerging Techniques for Enhancing the Practical Application of City Logistics Models. Procedia Soc. Behav. Sci. 2012, 39, 3–18. [Google Scholar] [CrossRef] [Green Version]
- Bala, B.K.; Arshad, F.M.; Noh, K.M. System Dynamics: Modelling and Simulation; Springer: Singapore, 2017. [Google Scholar]
- Villa, S.; Gonçalves, P.; Arango, S. Exploring Retailers’ Ordering Decisions Under Delays. Syst. Dyn. Rev. 2012, 31, 1–27. [Google Scholar] [CrossRef]
- Kunze, O.; Wulfhorst, G.; Minner, S. Applying Systems Thinking to City Logistics: A Qualitative (and Quantitative) Approach to Model Interdependencies of Decisions by Various Stakeholders and their Impact on City Logistics. Transp. Res. Procedia 2016, 12, 692–706. [Google Scholar] [CrossRef] [Green Version]
- Villa, S.; Gonçalves, P.; Arango, S. Describing and Explaining Urban Freight Transport by System Dynamics. Transp. Res. Procedia 2017, 25, 1075–1094. [Google Scholar]
- De La Torre, G.; Gruchmann, T.; Kamath, V.; Melkonyan, A.; Krumme, K. A System Dynamics-Based Simulation Model to Analyze Consumers’ Behavior Based on Participatory Systems Mapping—A “Last Mile” Perspective. In Innovative Logistics Services and Sustainable Lifestyles; Melkonyan, A., Krumme, K., Eds.; Springer Science and Business Media: New York, NY, USA, 2013; pp. 165–194. [Google Scholar]
- Anand, N.; van Duin, J.R.; Quak, H.; Tavasszy, L. Relevance of City Logistics Modeling Efforts: A Review. Transp. Rev. 2015, 35, 701–719. [Google Scholar] [CrossRef]
- Anand, N.; van Duin, J.R.; Tavasszy, L. Framework for Modeling Multi-Stakeholder City Logistics Domain Using the Agent Based Modeling Approach. Transp. Res. Procedia 2016, 16, 4–15. [Google Scholar] [CrossRef] [Green Version]
- Balinski, M.L. Integer Programming: Methods, Uses, Computations. Manag. Sci. 1965, 12, 253–313. [Google Scholar] [CrossRef]
- Laporte, G.; Nickel, S.; Saldanha da Gama, F. Location Science; Springer International Publishing: Cham, Switzerland, 2015. [Google Scholar]
- Melo, M.T.; Nickel, S.; Saldanha-da-Gama, F. Facility Location and Supply Chain Management—A Review. Eur. J. Oper. Res. 2009, 196, 401–412. [Google Scholar] [CrossRef]
- De Armas, J.; Juan, A.; Marquès, J.M.; Pedroso, J.P. Solving the Deterministic and Stochastic Uncapacitated Facility Location Problem: From a Heuristic to a Simheuristic. J. Oper. Res. Soc. 2017, 68, 1161–1176. [Google Scholar] [CrossRef]
- Absi, N.; Feillet, D.; Garaix, T.; Guyon, O. The City Logistics Facility Location Problem. In Proceedings of the ODYSSEUS 2012, Fifth International Workshop on Freight Transportation and Logistics, Mykonos Island, GR, USA, 21–25 May 2012. [Google Scholar]
- Pamučar, D.; Vasin, L.; Atanasković, P.; Miličić, M. Planning the City Logistics Terminal Location by Applying the Green-Median Model and Type-2 Neurofuzzy Network. Comput. Intell. Neurosci. 2016, 2016. [Google Scholar] [CrossRef] [Green Version]
- Sopha, B.M.; Asih, A.M.S.; Pradana, F.D.; Gunawan, H.E.; Karuniawati, Y. Urban Distribution Center Location: Combination of Spatial Analysis and Multi-Objective Mixed-Integer Linear Programming. Int. J. Eng. Bus. Manag. 2016, 8. [Google Scholar] [CrossRef] [Green Version]
- Dell’Amico, M.; Novellani, S. A Two-Echelon Facility Location Problem with Stochastic Demands for Urban Construction Logistics: An Application within the SUCCESS Project. In Proceedings of the 2017 IEEE International Conference on Service Operations and Logistics, and Informatics (SOLI), Bari, Italy, 18–20 September 2017; pp. 90–95. [Google Scholar]
- Gan, M.; Li, D.; Wang, M.; Zhang, G.; Yang, S.; Liu, J. Optimal Urban Logistics Facility Location with Consideration of Truck-Related Greenhouse Gas Emissions: A Case Study of Shenzhen City. Math. Probl. Eng. 2018, 2018. [Google Scholar] [CrossRef]
- Nataraj, S.; Ferone, D.; Quintero-Araujo, C.; Juan, A.; Festa, P. Consolidation Centers in City logistics: A Cooperative Approach Based on the Location Routing Problem. Int. J. Ind. Eng. Comput. 2018, 10, 393–404. [Google Scholar] [CrossRef]
- Herrmann, E.; Kunze, O. Facility Location Problems in City Crowd Logistics. Transp. Res. Procedia 2019, 41, 117–134. [Google Scholar] [CrossRef]
- Brandimarte, P. Handbook in Monte Carlo Simulation: Applications in Financial Engineering, Risk Management, and Economics; John Wiley and Sons.: Hoboken, NJ, USA, 2014. [Google Scholar]
- Kroese, D.P.; Brereton, T.; Taimre, T.; Botev, Z.I. Why the Monte Carlo Method is so Important Today. Wiley Interdiscip. Rev. Comput. Stat. 2014, 6, 386–392. [Google Scholar] [CrossRef]
- Palacios-Argüello, L.; Gonzalez-Feliu, J.; Gondran, N.; Badeig, F. Assessing the Economic and Environmental Impacts of Urban Food Systems for Public School Canteens: Case Study of Great Lyon Region. Eur. Transp. Res. Rev. 2018, 10, 37. [Google Scholar] [CrossRef] [Green Version]
- Tordecilla, R.D.; Juan, A.A.; Montoya-Torres, J.R.; Quintero-Araujo, C.L.; Panadero, J. Simulation-Optimization Methods for Designing and Assessing Resilient Supply Chain Networks under Uncertainty Scenarios: A Review. Simul. Model. Pract. Theory 2021, 106, 102166. [Google Scholar] [CrossRef]
- VDI 3633 Part 12. Simulation of Systems in Materials Handling, Logistics, and Production—Simulation and Optimisation; Beuth: Berlin, Germany, 2020. [Google Scholar]
- Maerz, L.; Krug, W.; Rose, O.; Weigert, G. (Eds.) Simulation und Optimierung in Produktion und Logistik; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Rabe, M.; Chicaiza-Vaca, J. A Simulation-Optimization Conceptual Model of Automated Parcel Lockers on Macro and Micro Planning Levels. In Proceedings of the 2019 Winter Simulation Conference (WSC), National Harbor, MD, USA, 8–11 December 2019; Mustafee, N., Bae, K.-H., Lazarova-Molnar, S., Rabe, M.C., Szabo, C., Haas, P., Son, Y.-J., Eds.; Institute of Electrical and Electronics Engineers, Inc.: Piscataway, NJ, USA, 2019; pp. 2904–2905. [Google Scholar]
- Juan, A.; Faulin, J.; Grasman, S.; Rabe, M.; Figueira, G. A Review of Simheuristics: Extending Metaheuristics to Deal with Stochastic Combinatorial Optimization Problems. Oper. Res. Perspect. 2015, 2, 62–72. [Google Scholar] [CrossRef] [Green Version]
- Juan, A.A.; Kelton, W.D.; Currie, C.S.; Faulin, J. Simheuristics Applications: Dealing with Uncertainty in Logistics, Transportation, and other Supply Chain Areas. In Proceedings of the 2019 Winter Simulation Conference (WSC), National Harbor, MD, USA, 8–11 December 2019; Rabe, M., Juan, A.A., Mustafee, N., Skoogh, A., Jain, S., Johansson, B., Eds.; Institute of Electrical and Electronics Engineers, Inc.: Piscataway, NJ, USA, 2019; pp. 3048–3059. [Google Scholar]
- Durand, B.; Gonzalez-Feliu, J. Urban Logistics and E-grocery: Have Proximity Delivery Services a Positive Impact on Shopping Trips? Procedia Soc. Behav. Sci. 2012, 39, 510–520. [Google Scholar] [CrossRef]
- Pages-Bernaus, A.; Ramalhinho, H.; Juan, A.A.; Calvet, L. Designing E-commerce Supply Chains: A Stochastic Facility-location Approach. Int. Trans. Oper. Res. 2019, 26, 507–528. [Google Scholar] [CrossRef]
- Quintero-Araujo, C.L.; Caballero-Villalobos, J.P.; Juan, A.A.; Montoya-Torres, J.R. A Biased-randomized Metaheuristic for the Capacitated Location Routing Problem. Int. Trans. Oper. Res. 2017, 24, 1079–1098. [Google Scholar] [CrossRef]
- Quintero-Araujo, C.L.; Gruler, A.; Juan, A.A.; Faulin, J. Using Horizontal Cooperation Concepts in Integrated Routing and Facility-location Decision. Int. Trans. Oper. Res. 2019, 26, 551–579. [Google Scholar] [CrossRef]
- Adenso-Diaz, B.; Mena, C.; Garcia-Carbajal, S.; Liechty, M. The Impact of Supply Network Characteristics on Reliability. Supply Chain. Manag. Int. J. 2012, 17, 263–276. [Google Scholar] [CrossRef]
- Peng, P.; Snyder, L.V.; Lim, A.; Liu, Z. Reliable Logistics Networks Design with Facility Disruptions. Transp. Res. Part B Methodol. 2011, 45, 1190–1211. [Google Scholar] [CrossRef]
Parameter | Definition | Initial Values |
---|---|---|
Population | Number of inhabitants in city of Dortmund | 602,566 inhabitants |
Population growth rate | Factor | 0.02/12 (%) per month |
Market Size | Population×Population growth rate | Population |
Service level | Factor | 90 (%) |
Accessibility | Factor | 70 (%) |
Potential e-customers | (Market Size×E-shopper share-APL users)× | Market Size× |
E-shoppers growth rate | E-shopper share | |
E-shoppers growth rate | Factor | 0.2/12 (%) |
E-shoppers share | Factor | 50 (%) |
APL market share | Factor | 15 (%) |
Avg. purchase per month | Constant×Service level | 3 units per month |
On-line purchase rate | Factor | 10 (%) |
Purchases per month | Avg. purchase per e-customer× | Avg. purchase |
On-line purchase rate | per month | |
APL users | (Potential e-customers×APL market share× | Potential e-customers |
APL market growth rate)× | ×APL market share | |
(Service level×Accessibility) | ||
Number of deliveries | APL users×Purchases per month | 0 Units |
Variable | S1 | S2 | S3 |
---|---|---|---|
E-shoppers rate | 50% | 60% | 70% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rabe, M.; Gonzalez-Feliu, J.; Chicaiza-Vaca, J.; Tordecilla, R.D. Simulation-Optimization Approach for Multi-Period Facility Location Problems with Forecasted and Random Demands in a Last-Mile Logistics Application. Algorithms 2021, 14, 41. https://doi.org/10.3390/a14020041
Rabe M, Gonzalez-Feliu J, Chicaiza-Vaca J, Tordecilla RD. Simulation-Optimization Approach for Multi-Period Facility Location Problems with Forecasted and Random Demands in a Last-Mile Logistics Application. Algorithms. 2021; 14(2):41. https://doi.org/10.3390/a14020041
Chicago/Turabian StyleRabe, Markus, Jesus Gonzalez-Feliu, Jorge Chicaiza-Vaca, and Rafael D. Tordecilla. 2021. "Simulation-Optimization Approach for Multi-Period Facility Location Problems with Forecasted and Random Demands in a Last-Mile Logistics Application" Algorithms 14, no. 2: 41. https://doi.org/10.3390/a14020041
APA StyleRabe, M., Gonzalez-Feliu, J., Chicaiza-Vaca, J., & Tordecilla, R. D. (2021). Simulation-Optimization Approach for Multi-Period Facility Location Problems with Forecasted and Random Demands in a Last-Mile Logistics Application. Algorithms, 14(2), 41. https://doi.org/10.3390/a14020041