New Approach for Radial Basis Function Based on Partition of Unity of Taylor Series Expansion with Respect to Shape Parameter
Abstract
:1. Introduction
2. Regular RBF Method
3. Taylor Series Radial Basis Function (RBF-TS)
4. Partition of Unity for Taylor Series Radial Basis Function (RBF-TPU)
5. Numerical Results
5.1. General Comparison
5.2. Effect of Varying
5.3. Effect of the Range of
5.4. Effect of Changing the Model Function, Mesh Size, and Mesh Distribution
5.5. Testing 2D Interpolation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fornberg, B.; Flyer, N. Accuracy of radial basis function interpolation and derivative approximations on 1-D infinite grids. Adv. Comput. Math. 2005, 23, 5–20. [Google Scholar] [CrossRef]
- Fasshauer, G.E. Meshfree Approximation Methods with Matlab: (With CD-ROM); World Scientific: Singapore, 2007. [Google Scholar]
- Beatson, R.K.; Cherrie, J.B.; Mouat, C.T. Fast fitting of radial basis functions: Methods based on preconditioned GMRES iteration. Adv. Comput. Math. 1999, 11, 253–270. [Google Scholar] [CrossRef]
- Ling, L.; Kansa, E.J. Preconditioning for radial basis functions with domain decomposition methods. Math. Comput. Model. 2004, 40, 1413–1427. [Google Scholar] [CrossRef]
- Ling, L.; Kansa, E.J. A least-squares preconditioner for radial basis functions collocation methods. Adv. Comput. Math. 2005, 23, 31–54. [Google Scholar] [CrossRef]
- Brown, D.; Ling, L.; Kansa, E.; Levesley, J. On approximate cardinal preconditioning methods for solving PDEs with radial basis functions. Eng. Anal. Bound. Elem. 2005, 29, 343–353. [Google Scholar] [CrossRef]
- Fasshauer, G.E.; Zhang, J.G. Preconditioning of radial basis function interpolation systems via accelerated iterated approximate moving least squares approximation. In Progress on Meshless Methods; Springer: Dordrecht, The Netherlands, 2009; pp. 57–75. [Google Scholar]
- Baxter, B.J.C. Preconditioned conjugate gradients, radial basis functions, and Toeplitz matrices. Comput. Math. Appl. 2002, 43, 305–318. [Google Scholar] [CrossRef] [Green Version]
- Cavoretto, R.; De Rossi, A.; Donatelli, M.; Serra-Capizzano, S. Spectral analysis and preconditioning techniques for radial basis function collocation matrices. Numer. Linear Algebra Appl. 2012, 19, 31–52. [Google Scholar] [CrossRef] [Green Version]
- Sarra, S.A. Regularized symmetric positive definite matrix factorizations for linear systems arising from RBF interpolation and differentiation. Eng. Anal. Bound. Elem. 2014, 44, 76–86. [Google Scholar] [CrossRef] [Green Version]
- Kansa, E.; Holoborodko, P. Strategies for Ill-Conditioned Radial Basis Functions Equations. 2017. Available online: https://www.researchgate.net/profile/Edward_Kansa/publication/320909429_Strategies_for_Ill-conditioned_radial_basis_functions_equations/links/5a01e5b0a6fdcc55a15816b9/Strategies-for-Ill-conditioned-radial-basis-functions-equations.pdf (accessed on 1 September 2018).
- Kansa, E.J.; Holoborodko, P. On the ill-conditioned nature of C$ınfty$ RBF strong collocation. Eng. Anal. Bound. Elem. 2017, 78, 26–30. [Google Scholar] [CrossRef]
- Fornberg, B.; Wright, G. Stable computation of multiquadric interpolants for all values of the shape parameter. Comput. Math. Appl. 2004, 48, 853–867. [Google Scholar] [CrossRef] [Green Version]
- Sarra, S.A.; Sturgill, D. A random variable shape parameter strategy for radial basis function approximation methods. Eng. Anal. Bound. Elem. 2009, 33, 1239–1245. [Google Scholar] [CrossRef]
- Wang, S.; Li, S.; Huang, Q.; Li, K. An improved collocation meshless method based on the variable shaped radial basis function for the solution of the interior acoustic problems. Math. Probl. Eng. 2012, 2012. [Google Scholar] [CrossRef]
- Ranjbar, M. A new variable shape parameter strategy for Gaussian radial basis function approximation methods. Ann. Univ. Craiova-Math. Comput. Sci. Ser. 2015, 42, 260–272. [Google Scholar]
- Golbabai, A.; Mohebianfar, E. A New Variable Shaped Radial Basis Function Approach for Solving European Option Pricing Model. 2015. Available online: http://oaji.net/articles/2015/1719-1427235215.pdf (accessed on 1 September 2018).
- Rippa, S. An algorithm for selecting a good value for the parameter c in radial basis function interpolation. Adv. Comput. Math. 1999, 11, 193–210. [Google Scholar] [CrossRef]
- Huang, C.-S.; Yen, H.-D.; Cheng, A.H.-D. On the increasingly flat radial basis function and optimal shape parameter for the solution of elliptic PDEs. Eng. Anal. Bound. Elem. 2010, 34, 802–809. [Google Scholar] [CrossRef]
- Davydov, O.; Oanh, D.T. On the optimal shape parameter for Gaussian radial basis function finite difference approximation of the Poisson equation. Comput. Math. Appl. 2011, 62, 2143–2161. [Google Scholar] [CrossRef] [Green Version]
- Mongillo, M. Choosing basis functions and shape parameters for radial basis function methods. SIAM Undergrad. Res. Online 2011, 4, 190–209. [Google Scholar] [CrossRef]
- Gherlone, M.; Iurlaro, L.; Di Sciuva, M. A novel algorithm for shape parameter selection in radial basis functions collocation method. Compos. Struct. 2012, 94, 453–461. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Rodriguez, P.; Bayona, V.; Moscoso, M.; Kindelan, M. Laurent series based RBF-FD method to avoid ill-conditioning. Eng. Anal. Bound. Elem. 2015, 52, 24–31. [Google Scholar] [CrossRef] [Green Version]
- Biazar, J.; Hosami, M. Selection of an interval for variable shape parameter in approximation by radial basis functions. Adv. Numer. Anal. 2016, 2016. [Google Scholar] [CrossRef] [Green Version]
- Biazar, J.; Hosami, M. An interval for the shape parameter in radial basis function approximation. Appl. Math. Comput. 2017, 315, 131–149. [Google Scholar] [CrossRef]
- Fasshauer, G.E. Solving partial differential equations by collocation with radial basis functions. In Proceedings of Chamonix; Vanderbilt University Press: Nashville, TN, USA, 1996; Volume 1997, pp. 1–8. [Google Scholar]
- Libre, N.A.; Emdadi, A.; Kansa, E.J.; Rahimian, M.; Shekarchi, M. Stable PDE solution methods for large multiquadric shape parameters. CMES Comput. Model. Eng. Sci. 2008, 25, 23–41. [Google Scholar]
- Beatson, R.K.; Levesley, J.; Mouat, C. Better bases for radial basis function interpolation problems. J. Comput. Appl. Math. 2011, 236, 434–446. [Google Scholar] [CrossRef] [Green Version]
- De Marchi, S.; Santin, G. A new stable basis for radial basis function interpolation. J. Comput. Appl. Math. 2013, 253, 1–13. [Google Scholar] [CrossRef]
- Rashidinia, J.; Fasshauer, G.E.; Khasi, M. A stable method for the evaluation of Gaussian radial basis function solutions of interpolation and collocation problems. Comput. Math. Appl. 2016, 72, 178–193. [Google Scholar] [CrossRef]
- Yurova, A.; Kormann, K. Stable evaluation of Gaussian radial basis functions using Hermite polynomials. arXiv 2017, arXiv:170902164. [Google Scholar]
- Fasshauer, G.E. RBF collocation methods as pseudospectral methods. WIT Trans. Model. Simul. 2005, 39, 10. [Google Scholar]
- Fasshauer, G.E.; Zhang, J.G. On choosing “optimal” shape parameters for RBF approximation. Numer. Algorithms 2007, 45, 345–368. [Google Scholar] [CrossRef]
- Tolstykh, A.I.; Shirobokov, D.A. Using radial basis functions in a “finite difference mode”. CMES Comput. Model. Eng. Sci. 2005, 7, 207–222. [Google Scholar]
- Wright, G.B.; Fornberg, B. Scattered node compact finite difference-type formulas generated from radial basis functions. J. Comput. Phys. 2006, 212, 99–123. [Google Scholar] [CrossRef]
- Kindelan, M.; Moscoso, M.; González-Rodríguez, P. Radial basis function interpolation in the limit of increasingly flat basis functions. J. Comput. Phys. 2016, 307, 225–242. [Google Scholar] [CrossRef]
- Flyer, N.; Fornberg, B.; Bayona, V.; Barnett, G.A. On the role of polynomials in RBF-FD approximations: I. Interpolation and accuracy. J. Comput. Phys. 2016, 321, 21–38. [Google Scholar] [CrossRef] [Green Version]
- Bayona, V.; Flyer, N.; Fornberg, B.; Barnett, G.A. On the role of polynomials in RBF-FD approximations: II. Numerical solution of elliptic PDEs. J. Comput. Phys. 2017, 332, 257–273. [Google Scholar] [CrossRef] [Green Version]
- Wendland, H. Fast evaluation of radial basis functions: Methods based on partition of unity. In The Approximation Theory X: Wavelets, Splines, and Applications; Charles, C., Larry, L.S., Joachim, S., Eds.; CiteseerX: Princeton, NJ, USA, 2002. [Google Scholar]
- Cavoretto, R.; De Rossi, A.; Perracchione, E. RBF-PU interpolation with variable subdomain sizes and shape parameters. In Proceedings of the AIP Conference Proceedings; AIP Publishing: Melville, NY, USA, 2016; Volume 1776, p. 070003. [Google Scholar]
- Cavoretto, R.; De Marchi, S.; De Rossi, A.; Perracchione, E.; Santin, G. Partition of unity interpolation using stable kernel-based techniques. Appl. Numer. Math. 2017, 116, 95–107. [Google Scholar] [CrossRef] [Green Version]
- Fornberg, B.; Piret, C. A stable algorithm for flat radial basis functions on a sphere. SIAM J. Sci. Comput. 2007, 30, 60–80. [Google Scholar] [CrossRef] [Green Version]
- Fornberg, B.; Piret, C. On choosing a radial basis function and a shape parameter when solving a convective PDE on a sphere. J. Comput. Phys. 2008, 227, 2758–2780. [Google Scholar] [CrossRef]
- Fornberg, B.; Larsson, E.; Flyer, N. Stable Computations with Gaussian Radial Basis Functions. SIAM J. Sci. Comput. 2011, 33, 869–892. [Google Scholar] [CrossRef]
- Fasshauer Gregory, E.; Mccourt Michael, J. Stable Evaluation of Gaussian Radial Basis Function Interpolants. SIAM J. Sci. Comput. 2012, 34, 737–762. [Google Scholar] [CrossRef]
- Larsson, E.; Lehto, E.; Heryudono, A.; Fornberg, B. Stable computation of differentiation matrices and scattered node stencils based on gaussian radial basis functions. SIAM J. Sci. Comput. 2013, 35, A2096–A2119. [Google Scholar] [CrossRef] [Green Version]
- Fornberg, B.; Lehto, E.; Powell, C. Stable calculation of Gaussian-based RBF-FD stencils. Comput. Math. Appl. 2013, 65, 627–637. [Google Scholar] [CrossRef]
- Gonnet, P.; Pachón, R.; Trefethen, L.N. Robust rational interpolation and least-squares. Electron. Trans. Numer. Anal. 2011, 38, 146–167. [Google Scholar]
- Wright, G.B.; Fornberg, B. Stable computations with flat radial basis functions using vector-valued rational approximations. J. Comput. Phys. 2017, 331, 137–156. [Google Scholar] [CrossRef] [Green Version]
- Bozzini, M.; Lenarduzzi, L.; Rossini, M.; Schaback, R. Interpolation with variably scaled kernels. IMA J. Numer. Anal. 2014, 35, 199–219. [Google Scholar] [CrossRef]
- Romani, L.; Rossini, M.; Schenone, D. Edge detection methods based on RBF interpolation. J. Comput. Appl. Math. 2018, 349. [Google Scholar] [CrossRef]
- De Marchi, S.; Marchetti, F.; Perracchione, E. Jumping with variably scaled discontinuous kernels (VSDKs). BIT Numer. Math. 2019, 1–23. [Google Scholar] [CrossRef] [Green Version]
- De Marchi, S.; Erb, W.; Marchetti, F.; Perracchione, E.; Rossini, M. Shape-Driven Interpolation With Discontinuous Kernels: Error Analysis, Edge Extraction, and Applications in Magnetic Particle Imaging. SIAM J. Sci. Comput. 2020, 42, B472–B491. [Google Scholar] [CrossRef]
- Shepard, D. A Two-Dimensional Interpolation Function for Irregularly-Spaced Data. In Proceedings of the 1968 23rd ACM National Conference; Association for Computing Machinery: New York, NY, USA, 1968; pp. 517–524. [Google Scholar]
- Cavoretto, R.; De Rossi, A.; Perracchione, E. Optimal Selection of Local Approximants in RBF-PU Interpolation. J. Sci. Comput. 2018, 74, 1–22. [Google Scholar] [CrossRef] [Green Version]
Model | Min log10[Norm(Error)] | Notes | |
---|---|---|---|
RBF | −5.37 | −3.58 | Depends on and has Runge’s phenomenon. |
RBF-TPU | −4.70 | −3.00 | Does not depend on , , or ; once the range of is optimized, which should be done once. |
Function | Mesh Distribution | Mesh Size | Method | Log10[Norm(Error)] | ε | ||
---|---|---|---|---|---|---|---|
Equation (16) | Regular | 21 | RBF | −5.37 | −3.58 | 1.43 | 1.10 |
RBF-TPU | −4.70 | −3.00 | All | All | |||
41 | RBF | −6.39 | −4.43 | 1.35 | 1.35 | ||
RBF-TPU | −5.01 | −3.24 | All | All | |||
61 | RBF | −6.34 | −4.46 | 1.33 | 1.33 | ||
RBF-TPU | −5.01 | −3.24 | All | All | |||
Stretched (i.e., Equation (20)) | 21 | RBF | −5.08 | −4.18 | 1.18 | 1.18 | |
RBF-TPU | −4.14 | −3.18 | All | All | |||
41 | RBF | −6.58 | −4.66 | 1.35 | 1.35 | ||
RBF-TPU | −4.98 | −3.06 | All | All | |||
61 | RBF | −6.62 | −4.46 | 1.35 | 1.35 | ||
RBF-TPU | −4.85 | −2.94 | All | All | |||
Equation (21) | Regular | 21 | RBF | −5.41 | −3.46 | 1.35 | 1.35 |
RBF-TPU | −3.86 | −2.09 | All | All | |||
41 | RBF | −6.13 | −4.48 | 1.33 | 1.33 | ||
RBF-TPU | −4.29 | −2.40 | All | All | |||
61 | RBF | −5.70 | −3.77 | 1.35 | 1.30 | ||
RBF-TPU | −4.20 | −2.38 | All | All | |||
Stretched (i.e., Equation (20)) | 21 | RBF | −4.56 | −3.14 | 1.15 | 1.10 | |
RBF-TPU | −3.80 | −2.49 | All | All | |||
41 | RBF | −6.05 | −4.63 | 1.33 | 1.33 | ||
RBF-TPU | −4.38 | −2.34 | All | All | |||
61 | RBF | −5.60 | −3.63 | 1.30 | 1.30 | ||
RBF-TPU | −4.14 | −2.10 | All | All |
Mesh Distribution | Model | Min log10[Norm(Error)] | ||
---|---|---|---|---|
Regular | RBF | −0.707 | 0.66 | 0.66 |
RBF-TPU | −0.713 | 0.65 | 0.65 | |
Stretched (i.e., Equation (20)) | RBF | −1.840 | −0.260 | −0.260 |
RBF-TPU | −1.117 | 0.132 | 0.145 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bawazeer, S.A.; Baakeem, S.S.; Mohamad, A.A. New Approach for Radial Basis Function Based on Partition of Unity of Taylor Series Expansion with Respect to Shape Parameter. Algorithms 2021, 14, 1. https://doi.org/10.3390/a14010001
Bawazeer SA, Baakeem SS, Mohamad AA. New Approach for Radial Basis Function Based on Partition of Unity of Taylor Series Expansion with Respect to Shape Parameter. Algorithms. 2021; 14(1):1. https://doi.org/10.3390/a14010001
Chicago/Turabian StyleBawazeer, Saleh A., Saleh S. Baakeem, and Abdulmajeed A. Mohamad. 2021. "New Approach for Radial Basis Function Based on Partition of Unity of Taylor Series Expansion with Respect to Shape Parameter" Algorithms 14, no. 1: 1. https://doi.org/10.3390/a14010001
APA StyleBawazeer, S. A., Baakeem, S. S., & Mohamad, A. A. (2021). New Approach for Radial Basis Function Based on Partition of Unity of Taylor Series Expansion with Respect to Shape Parameter. Algorithms, 14(1), 1. https://doi.org/10.3390/a14010001