On the Well-Posedness of A High Order Convective Cahn-Hilliard Type Equations
Abstract
:1. Introduction
2. A Priori Estimates
3. Proof of Theorem 1
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Coclite, G.M.; di Ruvo, L. Well-posedness of bounded solutions of the non-homogeneous initial-boundary value problem for the Ostrovsky-Hunter equation. J. Hyperbolic Differ. Equ. 2015, 12, 221–248. [Google Scholar] [CrossRef]
- Coclite, G.M.; di Ruvo, L. Oleinik type estimates for the Ostrovsky-Hunter equation. J. Math. Anal. Appl. 2015, 423, 162–190. [Google Scholar] [CrossRef]
- Coclite, G.M.; di Ruvo, L. Convergence of the Ostrovsky equation to the Ostrovsky-Hunter one. J. Differ. Equ. 2014, 256, 3245–3277. [Google Scholar] [CrossRef]
- Coclite, G.M.; di Ruvo, L. Well-posedness results for the short pulse equation. Z. Angew. Math. Phys. 2015, 66, 1529–1557. [Google Scholar] [CrossRef] [Green Version]
- Coclite, G.M.; di Ruvo, L. Wellposedness of bounded solutions of the non-homogeneous initial boundary for the short pulse equation. Boll. Unione Mat. Ital. 2015, 8, 31–44. [Google Scholar] [CrossRef] [Green Version]
- Coclite, G.M.; di Ruvo, L. Convergence of the regularized short pulse equation to the short pulse one. Math. Nachr. 2018, 291, 774–792. [Google Scholar] [CrossRef] [Green Version]
- Coclite, G.M.; di Ruvo, L. Well-posedness and dispersive/diffusive limit of a generalized Ostrovsky-Hunter equation. Milan J. Math. 2018, 86, 31–51. [Google Scholar] [CrossRef]
- Coclite, G.M.; di Ruvo, L. A note on the non-homogeneous initial boundary problem for an Ostrovsky-Hunter type equation. Discrete Contin. Dyn. Syst. Ser. S 2020. [Google Scholar] [CrossRef] [Green Version]
- Coclite, G.M.; di Ruvo, L. A non-local regularization of the short pulse equation. Minimax Theory Appl. 2020, in press. [Google Scholar] [CrossRef]
- Coclite, G.M.; di Ruvo, L. A non-local elliptic-hyperbolic system related to the short pulse equation. Nonlinear Anal. 2020, 190, 111606. [Google Scholar] [CrossRef]
- Coclite, G.M.; di Ruvo, L. Well-Posedness Results for the Continuum Spectrum Pulse Equation. Mathematics 2019, 7, 1006. [Google Scholar] [CrossRef] [Green Version]
- Coclite, G.M.; di Ruvo, L. On the solutions for an Ostrovsky type equation. Nonlinear Anal. Real World Appl. 2020, 55, 103141. [Google Scholar] [CrossRef]
- Savina, T.V.; Golovin, A.A.; Davis, S.H.; Nepomnyashchy, A.A.; Voorhees, P.W. Faceting of a growing crystal surface by surface diffusion. Phys. Rev. E 2003, 67, 021606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barakat, F.; Martens, K.; Pierre-Louis, O. Nonlinear Wavelength Selection in Surface Faceting under Electromigration. Phys. Rev. Lett. 2012, 109, 056101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berry, J.; Elder, K.R.; Grant, M. Simulation of an atomistic dynamic field theory for monatomic liquids: Freezing and glass formation. Phys. Rev. E 2008, 77, 061506. [Google Scholar] [CrossRef] [Green Version]
- Berry, J.; Grant, M.; Elder, K.R. Diffusive atomistic dynamics of edge dislocations in two dimensions. Phys. Rev. E 2006, 73, 031609. [Google Scholar] [CrossRef] [Green Version]
- Dlotko, T.; Kania, M.B.; Sun, C. Analysis of the viscous Cahn-Hilliard equation in ℝN. J. Differ. Equ. 2012, 252, 2771–2791. [Google Scholar] [CrossRef] [Green Version]
- Elder, K.R.; Grant, M. Modeling elastic and plastic deformations in nonequilibrium processing using phase field crystals. Phys. Rev. E 2004, 70, 051605. [Google Scholar] [CrossRef] [Green Version]
- Elder, K.R.; Katakowski, M.; Haataja, M.; Grant, M. Modeling Elasticity in Crystal Growth. Phys. Rev. Lett. 2002, 88, 245701. [Google Scholar] [CrossRef] [Green Version]
- Goldstein, G.R.; Miranville, A.; Schimperna, G. A Cahn–Hilliard model in a domain with non-permeable walls. Phys. D Nonlinear Phenom. 2011, 240, 754–766. [Google Scholar] [CrossRef]
- Golovin, A.A.; Nepomnyashchy, A.A.; Davis, S.H.; Zaks, M.A. Convective Cahn-Hilliard Models: From Coarsening to Roughening. Phys. Rev. Lett. 2001, 86, 1550–1553. [Google Scholar] [CrossRef] [PubMed]
- Watson, S.J.; Otto, F.; Rubinstein, B.Y.; Davis, S.H. Coarsening dynamics of the convective Cahn-Hilliard equation. Phys. D 2003, 178, 127–148. [Google Scholar] [CrossRef] [Green Version]
- Korzec, M.D.; Rybka, P. On a higher order convective Cahn-Hilliard-type equation. SIAM J. Appl. Math. 2012, 72, 1343–1360. [Google Scholar] [CrossRef]
- Korzec, M.D.; Nayar, P.; Rybka, P. Global weak solutions to a sixth order Cahn-Hilliard type equation. SIAM J. Math. Anal. 2012, 44, 3369–3387. [Google Scholar] [CrossRef] [Green Version]
- Korzec, M.D.; Evans, P.L.; Münch, A.; Wagner, B. Stationary solutions of driven fourth- and sixth-order Cahn-Hilliard-type equations. SIAM J. Appl. Math. 2008, 69, 348–374. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Duan, N. Optimal control of the sixth-order convective Cahn-Hilliard equation. Bound. Value Probl. 2014, 2014, 206. [Google Scholar] [CrossRef] [Green Version]
- Korzec, M.D.; Nayar, P.; Rybka, P. Global attractors of sixth order PDEs describing the faceting of growing surfaces. J. Dynam. Differ. Equ. 2016, 28, 49–67. [Google Scholar] [CrossRef] [Green Version]
- Gompper, G.; Goos, J. Fluctuating interfaces in microemulsion and sponge phases. Phys. Rev. E 1994, 50, 1325–1335. [Google Scholar] [CrossRef]
- Gompper, G.; Kraus, M. Ginzburg-Landau theory of ternary amphiphilic systems. I. Gaussian interface fluctuations. Phys. Rev. E 1993, 47, 4289–4300. [Google Scholar] [CrossRef]
- Gompper, G.; Kraus, M. Ginzburg-Landau theory of ternary amphiphilic systems. II. Monte Carlo simulations. Phys. Rev. E 1993, 47, 4301–4312. [Google Scholar] [CrossRef]
- Pawł ow, I.; Zaja̧czkowski, W.M. A sixth order Cahn-Hilliard type equation arising in oil-water-surfactant mixtures. Commun. Pure Appl. Anal. 2011, 10, 1823–1847. [Google Scholar] [CrossRef]
- Liu, A.; Liu, C. Weak solutions for a sixth order Cahn-Hilliard type equation with degenerate mobility. Abstr. Appl. Anal. 2014, 2014, 407265. [Google Scholar] [CrossRef]
- Topper, J.; Kawahara, T. Approximate equations for long nonlinear waves on a viscous fluid. J. Phys. Soc. Jpn. 1978, 44, 663–666. [Google Scholar] [CrossRef]
- Cohen, B.; Krommes, J.; Tang, W.; Rosenbluth, M. Non-linear saturation of the dissipative trapped-ion mode by mode coupling. Nucl. Fusion 1976, 16, 971–992. [Google Scholar] [CrossRef]
- Kuramoto, Y. Diffusion-Induced Chaos in Reaction Systems. Prog. Theor. Phys. Suppl. 1978, 64, 346–367. [Google Scholar] [CrossRef]
- Kuramoto, Y.; Tsuzuki, T. On the Formation of Dissipative Structures in Reaction-Diffusion Systems: Reductive Perturbation Approach. Prog. Theor. Phys. 1975, 54, 687–699. [Google Scholar] [CrossRef] [Green Version]
- Kuramoto, Y.; Tsuzuki, T. Persistent Propagation of Concentration Waves in Dissipative Media Far from Thermal Equilibrium. Prog. Theor. Phys. 1976, 55, 356–369. [Google Scholar] [CrossRef] [Green Version]
- Sivashinsky, G.I. Nonlinear analysis of hydrodynamic instability in laminar flames. I. Derivation of basic equations. Acta Astronaut. 1977, 4, 1177–1206. [Google Scholar] [CrossRef]
- Chen, L.H.; Chang, H.C. Nonlinear waves on liquid film surfaces—II. Bifurcation analyses of the long-wave equation. Chem. Eng. Sci. 1986, 41, 2477–2486. [Google Scholar] [CrossRef]
- Hooper, A.P.; Grimshaw, R. Nonlinear instability at the interface between two viscous fluids. Phys. Fluids 1985, 28, 37–45. [Google Scholar] [CrossRef]
- LaQuey, R.E.; Mahajan, S.M.; Rutherford, P.H.; Tang, W.M. Nonlinear Saturation of the Trapped-Ion Mode. Phys. Rev. Lett. 1975, 34, 391–394. [Google Scholar] [CrossRef] [Green Version]
- Benney, D.J. Long waves on liquid films. J. Math. Phys. 1966, 45, 150–155. [Google Scholar] [CrossRef]
- Lin, S.P. Finite amplitude side-band stability of a viscous film. J. Fluid Mech. 1974, 63, 417–429. [Google Scholar] [CrossRef]
- Li, C.; Chen, G.; Zhao, S. Exact travelling wave solutions to the generalized Kuramoto-Sivashinsky equation. Lat. Am. Appl. Res. 2004, 34, 65–68. [Google Scholar]
- Foias, C.; Nicolaenko, B.; Sell, G.R.; Temam, R. Inertial manifolds for the Kuramoto-Sivashinsky equation and an estimate of their lowest dimension. J. Math. Pures Appl. 1988, 67, 197–226. [Google Scholar]
- Khalique, C. Exact Solutions of the Generalized Kuramoto-Sivashinsky Equation. Casp. J. Math. Sci. (CJMS) 2012, 1, 109–116. [Google Scholar]
- Kudryashov, N.A. Exact solutions of the generalized Kuramoto-Sivashinsky equation. Phys. Lett. A 1990, 147, 287–291. [Google Scholar] [CrossRef]
- Nicolaenko, B.; Scheurer, B. Remarks on the Kuramoto-Sivashinsky equation. Phys. D 1984, 12, 391–395. [Google Scholar] [CrossRef]
- Nicolaenko, B.; Scheurer, B.; Temam, R. Some global dynamical properties of the Kuramoto-Sivashinsky equations: Nonlinear stability and attractors. Phys. D 1985, 16, 155–183. [Google Scholar] [CrossRef]
- Xie, Y. Solving the generalized Benney equation by a combination method. Int. J. Nonlinear Sci. 2013, 15, 350–354. [Google Scholar]
- Armaou, A.; Christofides, P.D. Feedback control of the Kuramoto-Sivashinsky equation. Phys. D 2000, 137, 49–61. [Google Scholar] [CrossRef]
- Cerpa, E. Null controllability and stabilization of the linear Kuramoto-Sivashinsky equation. Commun. Pure Appl. Anal. 2010, 9, 91–102. [Google Scholar] [CrossRef]
- Giacomelli, L.; Otto, F. New bounds for the Kuramoto-Sivashinsky equation. Comm. Pure Appl. Math. 2005, 58, 297–318. [Google Scholar] [CrossRef]
- Christofides, P.D.; Armaou, A. Global stabilization of the Kuramoto-Sivashinsky equation via distributed output feedback control. Syst. Control Lett. 2000, 39, 283–294. [Google Scholar] [CrossRef]
- Hu, C.; Temam, R. Robust control of the Kuramoto-Sivashinsky equation. Dyn. Contin. Discret. Impuls. Syst. Ser. B Appl. Algorithms 2001, 8, 315–338. [Google Scholar]
- Liu, W.J.; Krstić, M. Stability enhancement by boundary control in the Kuramoto-Sivashinsky equation. Nonlinear Anal. 2001, 43, 485–507. [Google Scholar] [CrossRef] [Green Version]
- Sajjadian, M. The shock profile wave propagation of Kuramoto-Sivashinsky equation and solitonic solutions of generalized Kuramoto-Sivashinsky equation. Acta Univ. Apulensis Math. Inform. 2014, 38, 163–176. [Google Scholar]
- Biagioni, H.A.; Bona, J.L.; Iório, R.J., Jr.; Scialom, M. On the Korteweg-de Vries-Kuramoto-Sivashinsky equation. Adv. Differ. Equ. 1996, 1, 1–20. [Google Scholar]
- Coclite, G.M.; di Ruvo, L. On Classical Solutions for A Kuramoto–Sinelshchikov–Velarde-Type Equation. Algorithms 2020, 13, 77. [Google Scholar] [CrossRef] [Green Version]
- Tadmor, E. The well-posedness of the Kuramoto-Sivashinsky equation. SIAM J. Math. Anal. 1986, 17, 884–893. [Google Scholar] [CrossRef] [Green Version]
- Coclite, G.M.; di Ruvo, L. Dispersive and diffusive limits for Ostrovsky-Hunter type equations. NoDEA Nonlinear Differ. Equ. Appl. 2015, 22, 1733–1763. [Google Scholar] [CrossRef] [Green Version]
- LeFloch, P.G.; Natalini, R. Conservation laws with vanishing nonlinear diffusion and dispersion. Nonlinear Anal. 1999, 36, 213–230. [Google Scholar] [CrossRef]
- Schonbek, M.E. Convergence of solutions to nonlinear dispersive equations. Comm. Partial Differ. Equ. 1982, 7, 959–1000. [Google Scholar] [CrossRef]
- Coclite, G.M.; di Ruvo, L. Convergence of the Kuramoto-Sinelshchikov equation to the Burgers one. Acta Appl. Math. 2016, 145, 89–113. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, C. Some properties of solutions for the sixth-order Cahn-Hilliard-type equation. Abstr. Appl. Anal. 2012, 2012, 414590. [Google Scholar] [CrossRef]
- Coclite, G.M.; di Ruvo, L. Existence results for the Kudryashov-Sinelshchikov-Olver equation. Proc. R. Soc. Edinb. Sect. A Math. 2020, 1–26. [Google Scholar] [CrossRef]
- Taylor, M.E. Partial Differential Equations I. Basic Theory, 2nd ed.; Springer: New York, NY, USA, 2011; Volume 115, p. xxii+654. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coclite, G.M.; di Ruvo, L. On the Well-Posedness of A High Order Convective Cahn-Hilliard Type Equations. Algorithms 2020, 13, 170. https://doi.org/10.3390/a13070170
Coclite GM, di Ruvo L. On the Well-Posedness of A High Order Convective Cahn-Hilliard Type Equations. Algorithms. 2020; 13(7):170. https://doi.org/10.3390/a13070170
Chicago/Turabian StyleCoclite, Giuseppe Maria, and Lorenzo di Ruvo. 2020. "On the Well-Posedness of A High Order Convective Cahn-Hilliard Type Equations" Algorithms 13, no. 7: 170. https://doi.org/10.3390/a13070170
APA StyleCoclite, G. M., & di Ruvo, L. (2020). On the Well-Posedness of A High Order Convective Cahn-Hilliard Type Equations. Algorithms, 13(7), 170. https://doi.org/10.3390/a13070170