# An Intelligent Artificial Neural Network Modeling of a Magnetorheological Elastomer Isolator

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Design and Working Principle of MRE Isolator

## 3. Testing and Results Analysis

## 4. Back-Propagation ANN Model

_{p}and F

_{e}are predicted force and experimental force, respectively.

## 5. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Yang, J.; Du, H.; Li, W.; Li, Y.; Li, J.; Sun, S.; Deng, H.X. Experimental study and modeling of a novel magnetorheological elastomer isolator. Smart Mater. Struct.
**2013**, 22, 45–54. [Google Scholar] [CrossRef] - Elbeheiry, E.M.; Karnopp, D.C. Optimal control of vehicle random vibration with constrained suspension deflection. J. Sound Vib.
**1996**, 189, 547–564. [Google Scholar] [CrossRef] - Nguyen, X.B. Fuzzy semiactive vibration control of structures using magnetorheological elastomer. Shock Vib.
**2017**, 2017, 1–15. [Google Scholar] [CrossRef] - Jung, H.J.; Spencer, B.F., Jr.; Ni, Y.Q.; Lee, I.W. State-of-the-art of semi-active control systems using MR fluid dampers in civil engineering applications. Struct. Eng. Mech.
**2004**, 17, 493–526. [Google Scholar] [CrossRef] - Nguyen, X.B.; Komatsuzaki, T.; Iwata, Y.; Asanuma, H. Modeling and semi-active fuzzy control of magnetorheological elastomer-based isolator for seismic response reduction. Mech. Syst. Signal Process.
**2018**, 101, 449–466. [Google Scholar] [CrossRef] [Green Version] - Li, W.H.; Zhou, Y.; Tian, T.F. Viscoelastic properties of MR elastomers under harmonic loading. Rheol. Acta
**2010**, 49, 733–740. [Google Scholar] [CrossRef] - Mikhailov, V.P.; Bazinenkov, A.M. Active vibration isolation platform on base of magnetorheological elastomers. J. Magn. Magn. Mater.
**2016**, 431, 266–268. [Google Scholar] [CrossRef] - Opie, S.; Yim, W. Design and control of a real-time variable modulus vibration isolator. J. Intell. Mater. Syst. Struct.
**2009**, 22, 113–125. [Google Scholar] [CrossRef] - Behrooz, M.; Wang, X.; Gordaninejad, F. Performance of a new magnetorheological elastomer isolation system. Smart Mater. Struct.
**2014**, 23, 045014. [Google Scholar] [CrossRef] - Du, H.; Li, W.; Zhang, N. Semi-active variable stiffness vibration control of vehicle seat suspension using an MR elastomer isolator. Smart Mater. Struct.
**2011**, 20, 105003. [Google Scholar] [CrossRef] - Norouzi, M.; Sajjadi Alehashem, S.M.; Vatandoost, H.; Ni, Y.Q.; Shahmardan, M.M. A new approach for modeling of magnetorheological elastomers. J. Intell. Mater. Syst. Struct.
**2016**, 27, 1–15. [Google Scholar] [CrossRef] - Kaleta, J.; Lewandowski, D.; Zietek, G. Inelastic properties of magnetorheological composites: II. Model, identification of parameters. Smart Mater. Struct.
**2007**, 16, 1954. [Google Scholar] [CrossRef] - Li, Y.; Li, J. A highly-adjustable base isolator utilizing magnetorheological elastomer: Experimental testing and modeling. J. Vib. Acoust.
**2015**, 137, 011009. [Google Scholar] [CrossRef] - Behrooz, M.; Wang, X.; Gordaninejad, F. Modeling of a new semi-active/passive magnetorheological elastomer isolator. Smart Mater. Struct.
**2014**, 23, 045013. [Google Scholar] [CrossRef] - Yu, Y.; Li, Y.; Li, J. Parameter identification and sensitivity analysis of an improved LuGre friction model for magnetorheological elastomer base isolator. Meccanica
**2015**, 50, 2691–2707. [Google Scholar] [CrossRef] - Yu, Y.; Li, Y.C.; Li, J.C.; Gu, X.Y.; Royel, S.; Pokhrel, A. Nonlinear and hysteretic modeling of magnetorheological elastomer base isolator using adaptive neuro-fuzzy inference system. Appl. Mech. Mater.
**2016**, 846, 258–263. [Google Scholar] [CrossRef] - Fu, J.; Liao, G.; Yu, M.; Li, P.; Lai, J. NARX neural network modeling and robustness analysis of magnetorheological elastomer isolator. Smart Mater. Struct.
**2016**, 25, 125019. [Google Scholar] [CrossRef] - Leng, D.; Wu, T.; Liu, G.; Wang, X.; Sun, L. Tunable isolator based on magnetorheological elastomer in coupling shear–squeeze mixed mode. J. Intell. Mater. Syst. Struct.
**2018**, 29, 2236–2248. [Google Scholar] [CrossRef] - Fan, D.; Yang, J.; Zhang, J.; Lv, Z.; Huang, H.; Qi, J.; Yang, P. Effectively measuring respiratory flow with portable pressure data using back propagation neural network. IEEE J. Transl. Eng. Health Med.
**2018**, 6, 1–12. [Google Scholar] [CrossRef] - Zhang, H.; Xu, D.; Zhang, Y. Boundedness and convergence of split-complex back-propagation algorithm with momentum and penalty. Neural Process. Lett.
**2014**, 39, 297–307. [Google Scholar] [CrossRef] - Wang, Z.; Mao, Z.; Xia, J.; Du, P.; Shi, L.; Huang, H.; Wang, T.; Gong, F.; Zhu, Q. Data fusion in data scarce areas using a back-propagation artificial neural network model: A case study of the South China Sea. Front. Earth Sci.
**2018**, 12, 280–289. [Google Scholar] [CrossRef] - Abuzneid, M.; Mahmood, A. Enhanced human face recognition using LBPH descriptor, Multi-KNN, and back-propagation neural network. IEEE Access
**2018**, 6, 20641–20651. [Google Scholar] [CrossRef]

**Figure 3.**Hysteresis loops of MRE isolator in various applied currents: (

**a**) A = 0.05 mm; (

**b**) A = 0.15 mm.

**Figure 7.**Comparison of output force between experimental and BPANN predicted results: (

**a**) A = 0.05 mm; (

**b**) A = 0.15 mm.

**Figure 9.**Force–displacement loops of MRE isolator under various applied currents for A = 0.10 mm at 0.5 Hz.

A | Magnetic Field Strength (T) |
---|---|

0.0 | 0.00 |

0.5 | 0.16 |

1.0 | 0.32 |

1.5 | 0.49 |

2.0 | 0.65 |

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Zhao, S.; Ma, Y.; Leng, D.
An Intelligent Artificial Neural Network Modeling of a Magnetorheological Elastomer Isolator. *Algorithms* **2019**, *12*, 195.
https://doi.org/10.3390/a12090195

**AMA Style**

Zhao S, Ma Y, Leng D.
An Intelligent Artificial Neural Network Modeling of a Magnetorheological Elastomer Isolator. *Algorithms*. 2019; 12(9):195.
https://doi.org/10.3390/a12090195

**Chicago/Turabian Style**

Zhao, Shiping, Yong Ma, and Dingxin Leng.
2019. "An Intelligent Artificial Neural Network Modeling of a Magnetorheological Elastomer Isolator" *Algorithms* 12, no. 9: 195.
https://doi.org/10.3390/a12090195