Integrated Speed Planning and Friction Coefficient Estimation Algorithm for Intelligent Electric Vehicles
Abstract
:1. Introduction
2. Friction Coefficient Estimation
2.1. Tire Force and Effective Radius Estimation
2.2. Calculation of the Tire Side-Slip Angles and Slip Ratios
2.3. Calculation of the Friction Coefficient
2.3.1. Analysis of the Tire Model
2.3.2. Process of Estimation
Algorithm 1 Friction coefficient estimation. |
Input:, ( and r; ) |
Output: |
1: procedure |
2: if then |
3: |
4: |
5: for do |
6: for do |
7: if then |
8: |
9: |
10: end if |
11: end for |
12: end for |
13: |
14: return |
15: else |
16: A reliable estimate cannot be found in this sampling window. |
17: end if |
18: end procedure |
2.4. Torque Injection
3. Speed Planning
3.1. Optimization Variables
3.2. Constraints
3.2.1. Constraints on the Speed on a Path Segment
3.2.2. Constraints on the Speed at a Node
3.2.3. Constraints on the Planned Speed Profile along the Path
3.3. Objective Function
3.4. Construction of the Optimization Problem
3.5. Calculation of the Planned Speed
4. Numerical Simulation
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ISPFCE | integrated speed planning and friction coefficient estimation |
CG | center of gravity |
References
- D’Ambrosio, C.; Sbarra, G.; Tiberti, M.; Verrelli, C.M.; Consolini, L. A new spatial learning control for autonomous vehicles: Experimental results. In Proceedings of the Annual Conference on System of Systems Engineering, Paris, France, 19–22 June 2018; pp. 68–73. [Google Scholar]
- Antonelli, D.; Pasquale, L.; Salvatore, A.; Tiberti, M.; Verrelli, C.M. Electric vehicles under slip constraints: Experimental results. In Proceedings of the AEIT International Annual Conference, Bari, Italy, 3–5 October 2018; pp. 1–6. [Google Scholar]
- Marino, R.; Pasquale, L.; Scalzi, S.; Verrelli, C.M. Automatic Rotor Speed Reference Generator for Electric Vehicles Under Slip Constraints. IEEE Trans. Intell. Transp. Syst. 2015, 16, 3473–3478. [Google Scholar] [CrossRef]
- Sc., A.E.D.; Arem, B.V.; Amditis, A.; Lytrivis, P.; Portouli, E.; Papp, Z.; Schutter, B.D.; Ploeg, J.; Baskar, L.D.; Naus, G. Handbook of Intelligent Vehicles; Springer: Berlin, Germany, 2012; pp. 1217–1267. [Google Scholar]
- Wang, J.; Rajamani, R. Should adaptive cruise-control systems be designed to maintain a constant time gap between vehicles? IEEE Trans. Veh. Technol. 2004, 53, 1480–1490. [Google Scholar] [CrossRef]
- Qu, T.; Chen, H.; Cao, D.; Guo, H. Switching-based stochastic model predictive control approach for modeling driver steering skill. IEEE Trans. Intell. Transp. Syst. 2015, 16, 365–375. [Google Scholar] [CrossRef]
- Marino, R.; Scalzi, S.; Netto, M. Nested PID steering control for lane keeping in autonomous vehicles. Control Eng. Pract. 2011, 19, 1459–1467. [Google Scholar] [CrossRef]
- Tagne, G.; Talj, R.; Charara, A. Higher-Order Sliding Mode Control for Lateral Dynamics of Autonomous Vehicles, with Experimental Validation. In Proceedings of the Intelligent Vehicles Symposium, Gold Coast, QLD, Australia, 23–26 June 2013; pp. 678–683. [Google Scholar]
- Yang, J.; Zhao, J.; Lei, J. Research on three kinds of lane keeping method based on anti-saturation and adaptive method. Int. J. Hybrid Inf. Technol. 2015, 8, 317–326. [Google Scholar] [CrossRef]
- Lei, J.; Wu, H.; Yang, J.; Zhao, J. Sliding mode lane keeping control based on separation of translation and rotation movement. Opt. Int. J. Light Electron Opt. 2016, 127, 4369–4374. [Google Scholar] [CrossRef]
- Raksincharoensak, P.; Nagai, M.; Shino, M. Lane keeping control strategy with direct yaw moment control input by considering dynamics of electric vehicle. Veh. Syst. Dyn. 2006, 44, 192–201. [Google Scholar] [CrossRef]
- Bian, C.; Yin, G.; Zhang, N.; Xu, L. Takagi-sugeno fuzzy model predictive controller design for combining lane keeping and speed tracking of four wheels steering and four wheels drive electric vehicle. In Proceedings of the Chinese Control and Decision Conference, Chongqing, China, 28–30 May 2017; pp. 4067–4072. [Google Scholar]
- Luo, Y.; Chen, T.; Li, K. Nonlinear model predictive cruise control of hybrid electric vehicle. Chin. J. Mech. Eng. 2015, 51, 11–21. [Google Scholar] [CrossRef]
- Wang, J.; Xu, X.; Liu, D.; Sun, Z.; Chen, Q. Self-learning cruise control using kernel-based least squares policy iteration. IEEE Trans. Control Syst. Technol. 2014, 22, 1078–1087. [Google Scholar] [CrossRef]
- Taymans, A.; Melchior, P.; Malti, R.; Aioun, F.; Guillemard, F.; Servel, A. Cruise control of an electric vehicle through fractional linear feedforward prefiltering of an acceleration reference signal. IFAC-PapersOnLine 2017, 50, 12569–12574. [Google Scholar] [CrossRef]
- Schwickart, T.; Voos, H.; Hadji-Minaglou, J.R.; Darouach, M.; Rosich, A. Design and simulation of a real-time implementable energy-efficient model-predictive cruise controller for electric vehicles. J. Frankl. Inst.-Eng. Appl. Math. 2015, 352, 603–625. [Google Scholar] [CrossRef]
- Eichelberger, A.H.; McCartt, A.T. Toyota drivers’ experiences with dynamic radar cruise control, pre-collision system, and lane-keeping assist. J. Saf. Res. 2016, 56, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Morand, A.; Moreau, X.; Melchior, P.; Moze, M.; Guillemard, F. CRONE cruise control system. IEEE Trans. Veh. Technol. 2016, 65, 15–28. [Google Scholar] [CrossRef]
- Reichhartinger, M.; Horn, M. Robust cascaded automatic cruise control of electric vehicles. Int. J. Robust Nonlinear Control 2016, 26, 662–680. [Google Scholar] [CrossRef]
- Qiu, C.; Liu, C.; Shen, F.; Chen, J. Design of automobile cruise control system based on Matlab and fuzzy PID. Trans. Chin. Soc. Agric. Eng. 2012, 28, 197–202. [Google Scholar]
- Lee, Y.; Ryoo, Y.J. Design of cruise control system for electric vehicle using piece-wised control. Adv. Intell. Syst. Comput. 2014, 269, 37–44. [Google Scholar] [CrossRef]
- Onieva, E.; Godoy, J.; Villagra, J.; Milanes, V.; Perez, J. On-line learning of a fuzzy controller for a precise vehicle cruise control system. Expert Syst. Appl. 2013, 40, 1046–1053. [Google Scholar] [CrossRef] [Green Version]
- Consolini, L.; Verrelli, C.M. Learning control in spatial coordinates for the path-following of autonomous vehicles. Automatica 2014, 50, 1867–1874. [Google Scholar] [CrossRef]
- Marino, R.; Scalzi, S.; Verrelli, C.M. Speed and traction control in electric vehicles with induction motors. In Proceedings of the Electrical Systems for Aircraft, Railway and Ship Propulsion, Bologna, Italy, 16–18 October 2012. [Google Scholar]
- Chen, Y.; Wang, J. Adaptive vehicle speed control with input injections for longitudinal motion independent road frictional condition estimation. IEEE Trans. Veh. Technol. 2011, 60, 839–848. [Google Scholar] [CrossRef]
- Deur, J.; Pavković, D.; Burgio, G.; Hrovat, D. A model-based traction control strategy non-reliant on wheel slip information. Veh. Syst. Dyn. 2011, 49, 1245–1265. [Google Scholar] [CrossRef]
- Xiong, L.; Yu, Z.; Wang, Y.; Yang, C.; Meng, Y. Vehicle dynamics control of four in-wheel motor drive electric vehicle using gain scheduling based on tyre cornering stiffness estimation. Veh. Syst. Dyn. 2012, 50, 831–846. [Google Scholar] [CrossRef]
- Zhenta, L. Optimal allocation of tire force based on vehicle stability. J. Mech. Electr. Eng. 2015, 32, 433–438. [Google Scholar] [CrossRef]
- Osborn, R. TaehyunShim. Independent control of all-wheel-drive torque distribution. Veh. Syst. Dyn. 2006, 44, 529–546. [Google Scholar] [CrossRef]
- Zhang, H.; Huang, X.; Wang, J.; Karimi, H.R. Robust energy-to-peak sideslip angle estimation with applications to ground vehicles. Mechatronics 2015, 30, 338–347. [Google Scholar] [CrossRef]
- Jazar, R.N. Vehicle Dynamics: Theory and Application; Springer: Berlin, Germany, 2008. [Google Scholar]
- Villagra, J.; D’Andréanovel, B.; Fliess, M.; Mounier, H. A diagnosis-based approach for tire-road forces and maximum friction estimation. Control Eng. Pract. 2011, 19, 174–184. [Google Scholar] [CrossRef]
- Wang, J.; Longoria, R.G. Coordinated vehicle dynamics control with control distribution. In Proceedings of the American Control Conference, Minneapolis, MN, USA, 14–16 June 2006; pp. 5348–5353. [Google Scholar]
- Bian, C.; Yin, G.; Hu, M.; Ning, Z.; Nan, C. Fault tolerant control design for all wheels independent drive and steering electric vehicle with singular effective drive wheel. In Proceedings of the Vehicle Power & Propulsion Conference, Hangzhou, China, 17–20 October 2016. [Google Scholar]
- Guvenc, B.; Acarman, T.; Guvenc, L. Coordination of steering and individual wheel braking actuated vehicle yaw stability control. In Proceedings of the IEEE Intelligent Vehicles Symposium, Columbus, OH, USA, 9–11 June 2003; pp. 288–293. [Google Scholar]
- Wang, R.; Wang, J. Fault-tolerant control for electric ground vehicles with independently-actuated in-wheel motors. J. Dyn. Syst. Meas. Control Trans. ASME 2012, 134, 021014. [Google Scholar] [CrossRef]
- Feiqiang, L.; Jun, W.; Zhaodu, L. On the vehicle stability control for electric vehicle based on control allocation. In Proceedings of the IEEE Vehicle Power and Propulsion Conference, Harbin, China, 3–5 September 2008; pp. 1–6. [Google Scholar]
- Pacejka, H.B. Tire and Vehicle Dynamics, 2nd ed.; Elsevier: New York, NY, USA, 2006. [Google Scholar]
- Ferreau, H.J.; Kirches, C.; Potschka, A.; Bock, H.G.; Diehl, M. qpOASES: A parametric active-set algorithm for quadratic programming. Math. Program. Comput. 2014, 6, 327–363. [Google Scholar] [CrossRef]
- Tavan, N.; Tavan, M.; Hosseini, R.; Tavan, N.; Tavan, M.; Hosseini, R. An optimal integrated longitudinal and lateral dynamic controller development for vehicle path tracking. Lat. Am. J. Solids Struct. 2014, 12, 1006–1023. [Google Scholar] [CrossRef]
Parameter | Value | Parameter | Value |
---|---|---|---|
m | 1412 kg | 0.3 m | |
1.016 m | 1.564 m | ||
0.77 m | 0.54 m |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bian, C.; Zhu, T.; Yin, G.; Xu, L. Integrated Speed Planning and Friction Coefficient Estimation Algorithm for Intelligent Electric Vehicles. Algorithms 2019, 12, 44. https://doi.org/10.3390/a12020044
Bian C, Zhu T, Yin G, Xu L. Integrated Speed Planning and Friction Coefficient Estimation Algorithm for Intelligent Electric Vehicles. Algorithms. 2019; 12(2):44. https://doi.org/10.3390/a12020044
Chicago/Turabian StyleBian, Chentong, Tong Zhu, Guodong Yin, and Liwei Xu. 2019. "Integrated Speed Planning and Friction Coefficient Estimation Algorithm for Intelligent Electric Vehicles" Algorithms 12, no. 2: 44. https://doi.org/10.3390/a12020044
APA StyleBian, C., Zhu, T., Yin, G., & Xu, L. (2019). Integrated Speed Planning and Friction Coefficient Estimation Algorithm for Intelligent Electric Vehicles. Algorithms, 12(2), 44. https://doi.org/10.3390/a12020044