Next Article in Journal
Combinatorial GVNS (General Variable Neighborhood Search) Optimization for Dynamic Garbage Collection
Next Article in Special Issue
Learning Algorithm of Boltzmann Machine Based on Spatial Monte Carlo Integration Method
Previous Article in Journal
A Gradient-Based Cuckoo Search Algorithm for a Reservoir-Generation Scheduling Problem
Open AccessArticle

Generalized Kinetic Monte Carlo Framework for Organic Electronics

Department of Electrical and Computer Engineering, Technical University of Munich, Theresienstraße 90, 80333 Munich, Germany
Author to whom correspondence should be addressed.
Algorithms 2018, 11(4), 37;
Received: 31 January 2018 / Revised: 16 March 2018 / Accepted: 22 March 2018 / Published: 26 March 2018
(This article belongs to the Special Issue Monte Carlo Methods and Algorithms)
PDF [593 KB, uploaded 26 March 2018]


In this paper, we present our generalized kinetic Monte Carlo (kMC) framework for the simulation of organic semiconductors and electronic devices such as solar cells (OSCs) and light-emitting diodes (OLEDs). Our model generalizes the geometrical representation of the multifaceted properties of the organic material by the use of a non-cubic, generalized Voronoi tessellation and a model that connects sites to polymer chains. Herewith, we obtain a realistic model for both amorphous and crystalline domains of small molecules and polymers. Furthermore, we generalize the excitonic processes and include triplet exciton dynamics, which allows an enhanced investigation of OSCs and OLEDs. We outline the developed methods of our generalized kMC framework and give two exemplary studies of electrical and optical properties inside an organic semiconductor. View Full-Text
Keywords: kinetic Monte Carlo; organic semiconductors; Voronoi tessellation; polymer chains; excitonic processes kinetic Monte Carlo; organic semiconductors; Voronoi tessellation; polymer chains; excitonic processes

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Share & Cite This Article

MDPI and ACS Style

Kaiser, W.; Popp, J.; Rinderle, M.; Albes, T.; Gagliardi, A. Generalized Kinetic Monte Carlo Framework for Organic Electronics. Algorithms 2018, 11, 37.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Algorithms EISSN 1999-4893 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top