#
Type-1 Fuzzy Sets and Intuitionistic Fuzzy Sets^{ †}

^{1}

^{2}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. What Is There in IFS Theory That Has No Analogue in T1FS Theory?

## 3. What in IFS Theory Can Be Transformed to T1FS Theory?

## 4. Conclusions

## Acknowledgments

## Conflicts of Interest

## References

- Zadeh, L. Fuzzy sets. Inf. Control
**1965**, 8, 338–353. [Google Scholar] [CrossRef] - Goguen, J. L-fuzzy sets. J. Math. Anal. Appl.
**1967**, 18, 145–174. [Google Scholar] [CrossRef] - Zadeh, L. The concept of a linguistic variable and its application to approximate reasoning. Inf. Sci.
**1975**, 8, 199–249. [Google Scholar] [CrossRef] - Pawlak, Z. Rough Sets Research Report PAS 431; Institute of Computer Science, Polish Academy of Sciences: Warsaw, Poland, 1981. [Google Scholar]
- Pawlak, Z. Rough sets. Int. J. Comput. Inf. Sci.
**1982**, 11, 341–356. [Google Scholar] [CrossRef] - Atanassov, K. Intuitionistic fuzzy sets. In Proceedings of the VII ITKR’s Session, Sofia, Bulgaria, 7–9 June 1983. (Deposed in Central Sci.- Techn. Library of Bulg. Acad. of Sci., 1697/84) (in Bulgaria); reprinted in Int. J. Bioautom.
**2016**, 20, S1–S6. [Google Scholar] - Castillo, O.; Melin, P. Type-2 Fuzzy Logic: Theory and Applications; Springer: Berlin, Germany, 2008. [Google Scholar]
- Gonzalez, C.I.; Melin, P.; Castro, J.R.; Castillo, O. Edge Detection Methods Based on Generalized Type-2 Fuzzy Logic; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Ponce-Cruz, P.; Molina, A.; MacCleery, B. Fuzzy Logic Type-1 and Type-2 Based on LabVIEW FPGA; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Kaufmann, A. Introduction a La Theorie Des Sour-Ensembles Flous; Masson: Paris, France, 1977. [Google Scholar]
- Atanassov, K. Intuitionistic Fuzzy Sets; Springer: Heidelberg, Germany, 1999. [Google Scholar]
- Atanassov, K. On Intuitionistic Fuzzy Sets Theory; Springer: Berlin, Germany, 2012. [Google Scholar]
- Danchev, S. A new geometrical interpretation of some concepts in the intuitionistic fuzzy logics. Notes Intuit. Fuzzy Sets
**1995**, 1, 116–118. [Google Scholar] - Szmidt, E. Applications of Intuitionistic Fuzzy Sets in Decision Making. Ph.D. Thesis, Technical University, Sofia, Bulgaria, 2000. [Google Scholar]
- Szmidt, E.; Kacprzyk, J. Similarity of intuitionistic fuzzy sets and the Jaccard coefficient. In Proceedings of the Tenth International Conference IPMU’2004, Perugia, Italy, 4–9 July 2004; Volume 2, pp. 1405–1412. [Google Scholar]
- Szmidt, E.; Kacprzyk, J. New measures of entropy for intuitionistic fuzzy sets. Notes Intuit. Fuzzy Sets
**2005**, 11, 12–20. [Google Scholar] - Atanassov, K. New geometrical interpretation of the intuitionistic fuzzy pairs. Notes Intuit. Fuzzy Sets
**2016**, 22, 12–18. [Google Scholar] - Atanassov, K. Intuitionistic Fuzzy Logics; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Atanassov, K.; Szmidt, E.; Kacprzyk, J. New Fodor’s type of intuitionistic fuzzy implication and negation. Notes Intuit. Fuzzy Sets
**2016**, 22, 1–8. [Google Scholar] - Atanassov, K.; Szmidt, E.; Kacprzyk, J. Intuitionistic fuzzy implication → 187. Notes Intuit. Fuzzy Sets
**2017**, 23, 37–43. [Google Scholar] - Atanassov, K.; Szmidt, E.; Kacprzyk, J. Intuitionistic fuzzy implication → 188. Notes Intuit. Fuzzy Sets
**2017**, 23, 6–13. [Google Scholar] - Atanassova, L. Intuitionistic fuzzy implication → 189. Notes Intuit. Fuzzy Sets
**2017**, 23, 14–20. [Google Scholar] - Brouwer, L.E.J. Collected Works; North Holland: Amsterdam, The Netherlands, 1975; Volume 1. [Google Scholar]
- Van Dalen, D. (Ed.) Brouwer’s Cambridge Lectures on Intuitionism; Cambridge University Press: Cambridge, UK, 1981. [Google Scholar]
- Atanassov, K.; Gargov, G. Intuitionistic fuzzy logic operators of a set theoretical type. In Proceedings of the First Workshop on Fuzzy Based Expert Systems, Sofia, Bulgaria, 28–30 September 1994; pp. 39–42. [Google Scholar]
- Atanassova, V.; Doukovska, L. Compass-and-straightedge constructions in the intuitionistic fuzzy interpretational triangle: Two new intuitionistic fuzzy modal operators. Notes Intuit. Fuzzy Sets
**2017**, 23, 1–7. [Google Scholar] - Kuratowski, K. Topology; Academies Press: New York, NY, USA, 1966; Volume 1. [Google Scholar]
- Yosida, K. Functional Analysis; Springer-Verlag: Berlin, Germany, 1965. [Google Scholar]
- Atanassov, K. Geometrical interpretation of the elements of the intuitionistic fuzzy objects. Preprint IM-MFAIS-1-89, Sofia, Bulgaria, 1989; reprinted in Int. J. Bioautom.
**2016**, 20, S27–S42. - Gorzalczany, M. A method of inference in approximate reasoning based on interval-valued fuzzy sets. Fuzzy Sets Syst.
**1987**, 21, 1–17. [Google Scholar] [CrossRef]

**Figure 6.**Fourth geometrical interpretation, where $\alpha =\pi {\mu}_{A}\left(x\right)$, $\beta =\pi {\nu}_{A}\left(x\right)$ and here $\pi =3.14\cdots $.

© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Atanassov, K.T.
Type-1 Fuzzy Sets and Intuitionistic Fuzzy Sets. *Algorithms* **2017**, *10*, 106.
https://doi.org/10.3390/a10030106

**AMA Style**

Atanassov KT.
Type-1 Fuzzy Sets and Intuitionistic Fuzzy Sets. *Algorithms*. 2017; 10(3):106.
https://doi.org/10.3390/a10030106

**Chicago/Turabian Style**

Atanassov, Krassimir T.
2017. "Type-1 Fuzzy Sets and Intuitionistic Fuzzy Sets" *Algorithms* 10, no. 3: 106.
https://doi.org/10.3390/a10030106