An Easily Understandable Grey Wolf Optimizer and Its Application to Fuzzy Controller Tuning
Abstract
:1. Introduction
2. Problem Setting
3. Grey Wolf Optimizer, Analysis, and Optimal Tuning Approach
3.1. Grey Wolf Optimizer and Analysis
3.2. Optimal Tuning Approach
4. Case Study
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Castillo, O.; Martinez-Marroquin, R.; Melin, P.; Valdez, F.; Soria, J. Comparative study of bio-inspired algorithms applied to the optimization of type-1 and type-2 fuzzy controllers for an autonomous mobile robot. Inf. Sci. 2012, 192, 19–38. [Google Scholar]
- Castillo, O.; Melin, P. A review on interval type-2 fuzzy logic applications in intelligent control. Inf. Sci. 2014, 279, 615–631. [Google Scholar] [CrossRef]
- Precup, R.-E.; Angelov, P.; Costa, B.S.J.; Sayed-Mouchaweh, M. An overview on fault diagnosis and nature-inspired optimal control of industrial process applications. Comput. Ind. 2015, 74, 75–94. [Google Scholar] [CrossRef]
- Bouallègue, S.; Haggège, J.; Ayadi, M.; Benrejeb, M. PID-type fuzzy logic controller tuning based on particle swarm optimization. Eng. Appl. Artif. Intell. 2012, 25, 484–493. [Google Scholar] [CrossRef]
- Tran, H.-K.; Chiou, J.-S. PSO-based algorithm applied to quadcopter micro air vehicle controller design. Micromachines 2016, 7, 168. [Google Scholar]
- Sahu, R.K.; Panda, S.; Chandra Sekhar, G.T. A novel hybrid PSO-PS optimized fuzzy PI controller for AGC in multi area interconnected power systems. Int. J. Electr. Power Energy Syst. 2015, 64, 880–893. [Google Scholar]
- David, R.-C.; Precup, R.-E.; Petriu, E.M.; Radac, M.-B.; Preitl, S. Gravitational search algorithm-based design of fuzzy control systems with a reduced parametric sensitivity. Inf. Sci. 2013, 247, 154–173. [Google Scholar] [CrossRef]
- Azadani, H.N.; Torkzadeh, R. Design of GA optimized fuzzy logic-based PID controller for the two area non-reheat thermal power system. In Proceedings of the 13th Iranian Conference on Fuzzy Systems, Qazvin, Iran, 27–29 August 2013; pp. 1–6. [Google Scholar]
- Precup, R.-E.; David, R.-C.; Petriu, E.M.; Preitl, S.; Radac, M.-B. Novel adaptive charged system search algorithm for optimal tuning of fuzzy controllers. Expert Syst. Appl. 2014, 41, 1168–1175. [Google Scholar]
- Castillo, O.; Neyoy, H.; Soria, J.; Melin, P.; Valdez, F. A new approach for dynamic fuzzy logic parameter tuning in ant colony optimization and its application in fuzzy control of a mobile robot. Appl. Soft Comput. 2015, 28, 150–159. [Google Scholar] [CrossRef]
- Castillo, O.; Lizárraga, E.; Soria, J.; Melin, P.; Valdez, F. New approach using ant colony optimization with ant set partition for fuzzy control design applied to the ball and beam system. Inf. Sci. 2015, 294, 203–215. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef]
- Mahdad, B.; Srairi, K. Blackout risk prevention in a smart grid based flexible optimal strategy using grey wolf-pattern search algorithms. Energy Convers. Manag. 2015, 98, 411–429. [Google Scholar] [CrossRef]
- Mirjalili, S. How effective is the grey wolf optimizer in training multi-layer perceptrons. Appl. Intell. 2015, 43, 150–161. [Google Scholar] [CrossRef]
- Sulaiman, M.H.; Mustaffa, Z.; Mohamed, M.R.; Aliman, O. Using the grey wolf optimizer for solving optimal reactive power dispatch problem. Appl. Soft Comput. 2015, 32, 286–292. [Google Scholar] [CrossRef]
- Saremi, S.; Mirjalili, S.Z.; Mirjalili, S.M. Evolutionary population dynamics and grey wolf optimizer. Neural Comput. Appl. 2015, 26, 1257–1263. [Google Scholar] [CrossRef]
- Medjahed, S.A.; Saadi, T.A.; Benyettou, A.; Ouali, M. Gray wolf optimizer for hyperspectral band selection. Appl. Soft Comput. 2016, 40, 178–186. [Google Scholar] [CrossRef]
- Yang, B.; Zhang, X.-S.; Yu, T.; Shu, H.-C.; Fang, Z.-H. Grouped grey wolf optimizer for maximum power point tracking of doubly-fed induction generator based wind turbine. Energy Convers. Manag. 2017, 133, 427–443. [Google Scholar] [CrossRef]
- Noshadi, A.; Shi, J.; Lee, W.S.; Shi, P.; Kalam, A. Optimal PID-type fuzzy logic controller for a multi-input multi-output active magnetic bearing system. Neural Comput. Appl. 2016, 27, 2031–2046. [Google Scholar] [CrossRef]
- Precup, R.-E.; David, R.-C.; Petriu, E.M.; Szedlak-Stinean, A.-I.; Bojan-Dragos, C.-A. Grey wolf optimizer-based approach to the tuning of PI-fuzzy controllers with a reduced process parametric sensitivity. IFAC-Pap. Online 2016, 48, 55–60. [Google Scholar] [CrossRef]
- Precup, R.-E.; David, R.-C.; Petriu, E.M. Grey wolf optimizer algorithm-based tuning of fuzzy control systems with reduced parametric sensitivity. IEEE Trans. Ind. Electron. 2017, 64, 527–534. [Google Scholar] [CrossRef]
- Precup, R.-E.; David, R.-C.; Petriu, E.M.; Preitl, S.; Radac, M.-B. Gravitational search algorithms in fuzzy control systems tuning. In Proceedings of the 18th IFAC World Congress, Milano, Italy, 28 August–2 September 2011; pp. 13624–13629. [Google Scholar]
- Precup, R.-E.; David, R.-C.; Petriu, E.M.; Radac, M.-B.; Preitl, S. Adaptive GSA-based optimal tuning of PI controlled servo systems with reduced process parametric sensitivity, robust stability and controller robustness. IEEE Trans. Cybern. 2014, 44, 1997–2009. [Google Scholar] [CrossRef] [PubMed]
- Precup, R.-E.; Sabau, M.-C.; Petriu, E.M. Nature-inspired optimal tuning of input membership functions of Takagi-Sugeno-Kang fuzzy models for anti-lock braking systems. Appl. Soft Comput. 2015, 27, 575–589. [Google Scholar] [CrossRef]
- Preitl, S.; Precup, R.-E. On the algorithmic design of a class of control systems based on providing the symmetry of open-loop Bode plots. Sci. Bull. UPT Trans. Autom. Control Comput. Sci. 1996, 41, 47–55. [Google Scholar]
- Preitl, S.; Precup, R.-E. An extension of tuning relations after symmetrical optimum method for PI and PID controllers. Automatica 1999, 35, 1731–1736. [Google Scholar] [CrossRef]
- Precup, R.-E.; Doboli, S.; Preitl, S. Stability analysis and development of a class of fuzzy control systems. Eng. Appl. Artif. Intell. 2000, 13, 237–247. [Google Scholar] [CrossRef]
- Precup, R.-E.; Preitl, S. PI-fuzzy controllers for integral plants to ensure robust stability. Inf. Sci. 2007, 177, 4410–4429. [Google Scholar] [CrossRef]
- Precup, R.-E.; Radac, M.-B.; Tomescu, M.L.; Petriu, E.M.; Preitl, S. Stable and convergent iterative feedback tuning of fuzzy controllers for discrete-time SISO systems. Expert Syst. Appl. 2013, 40, 188–199. [Google Scholar] [CrossRef]
- Galichet, S.; Foulloy, L. Fuzzy controllers: Synthesis and equivalences. IEEE Trans. Fuzzy Syst. 1995, 3, 140–148. [Google Scholar] [CrossRef]
- Precup, R.-E.; Preitl, S. Popov-type stability analysis method for fuzzy control systems. In Proceedings of the Fifth European Congress on Intelligent Technologies and Soft Computing, Aachen, Germany, 8–11 September 1997; Volume 2, pp. 1306–1310. [Google Scholar]
- Kluska, J. Absolute stability of continuous fuzzy control systems. In Stability Issues in Fuzzy Control; Aracil, J., Gordillo, F., Eds.; Springer-Verlag: Berlin/Heidelberg, Germany; New York, NY, USA, 2000; Studies in Fuzziness and Soft Computing; Volume 44, pp. 15–45. [Google Scholar]
- Baranyi, P.; Tikk, D.; Yam, Y.; Patton, R.J. From differential equations to PDC controller design via numerical transformation. Comput. Ind. 2003, 51, 281–297. [Google Scholar] [CrossRef]
- Škrjanc, I.; Blažič, S. Predictive functional control based on fuzzy model: Design and stability study. J. Intell. Robot. Syst. 2005, 43, 283–299. [Google Scholar] [CrossRef]
- Driss, Z.; Mansouri, N. A novel adaptive approach for synchronization of uncertain chaotic systems using fuzzy PI controller and active control method. Control Eng. Appl. Inform. 2016, 18, 3–13. [Google Scholar]
- Liu, C.; Lam, H.-K.; Ban, X.-J.; Zhao, X.-D. Design of polynomial fuzzy observer-controller with membership functions using unmeasurable premise variables for nonlinear systems. Inf. Sci. 2016, 355–356, 186–207. [Google Scholar] [CrossRef]
- Delprat, S.; Lauber, J.; Guerra, T.-M.; Rimaux, J. Control of a parallel hybrid powertrain: Optimal control. IEEE Trans. Veh. Technol. 2004, 53, 872–881. [Google Scholar] [CrossRef]
- Filip, F.G. Decision support and control for large-scale complex systems. Ann. Rev. Control 2008, 32, 61–70. [Google Scholar] [CrossRef]
- Qin, Q.-D.; Cheng, S.; Zhang, Q.-Y.; Li, L.; Shi, Y.-H. Biomimicry of parasitic behavior in a coevolutionary particle swarm optimization algorithm for global optimization. Appl. Soft Comput. 2015, 32, 224–240. [Google Scholar] [CrossRef]
- Ghosn, S.B.; Drouby, F.; Harmanani, H.M. A parallel genetic algorithm for the open-shop scheduling problem using deterministic and random moves. Int. J. Artif. Intell. 2016, 14, 130–144. [Google Scholar]
- Osaba, E.; Yang, X.-S.; Diaz, F.; Lopez, P.; Carballedo, R. An improved discrete bat algorithm for symmetric and asymmetric traveling salesman problems. Eng. Appl. Artif. Intell. 2016, 48, 59–71. [Google Scholar] [CrossRef]
- Azar, D.; Fayad, K.; Daoud, C. A combined ant colony optimization and simulated annealing algorithm to assess stability and fault-proneness of classes based on internal software quality attributes. Int. J. Artif. Intell. 2016, 14, 137–156. [Google Scholar]
- Kadirkamanathan, V.; Selvarajah, K.; Fleming, P.J. Stability analysis of the particle dynamics in particle swarm optimizer. IEEE Trans. Evol. Comput. 2006, 10, 245–253. [Google Scholar] [CrossRef]
- Jiang, S.-H.; Wang, Y.; Jia, Z.-C. Convergence analysis and performance of an improved gravitational search algorithm. Appl. Soft Comput. 2014, 24, 363–384. [Google Scholar] [CrossRef]
- Farivar, F.; Shoorehdeli, M.A. Stability analysis of particle dynamics in gravitational search optimization algorithm. Inf. Sci. 2016, 337–338, 25–43. [Google Scholar] [CrossRef]
- Gajate, A.; Haber, R.E.; Vega, P.I.; Alique, J.R. A transductive neuro-fuzzy controller: Application to a drilling process. IEEE Trans. Neural Netw. 2010, 21, 1158–1167. [Google Scholar] [CrossRef] [PubMed]
- Angelov, P.; Yager, R. A new type of simplified fuzzy rule-based systems. Int. J. Gen. Syst. 2012, 41, 163–185. [Google Scholar] [CrossRef]
- Chen, T.; Liao, T.W.; Yu, F.-S. Fuzzy collaborative intelligence and systems. Int. J. Intell. Syst. 2015, 30, 617–619. [Google Scholar] [CrossRef]
- Teodorescu, H.-N.L. Revisiting models of vulnerabilities of the networks. Stud. Inform. Control 2016, 25, 469–478. [Google Scholar] [CrossRef]
- Li, H.-Y.; Yeh, R.-G.; Lin, Y.-C.; Lin, L.-Y.; Zhao, J.; Lin, C.-M.; Rudas, I.J. Medical sample classifier design using fuzzy cerebellar model neural networks. Acta Polytech. Hung. 2016, 13, 7–24. [Google Scholar]
- Formentin, S.; Karimi, A.; Savaresi, S.M. Optimal input design for direct data-driven tuning of model-reference controllers. Automatica 2013, 49, 1874–1882. [Google Scholar] [CrossRef]
- Chiarandini, M.; Kjeldsen, N.H.; Nepomuceno, N. Integrated planning of biomass inventory and energy production. IEEE Trans. Comput. 2014, 63, 102–114. [Google Scholar] [CrossRef]
- Molnár, S.; Szidarovszky, F. An alternative method in optimizing random outcomes. Acta Polytech. Hung. 2016, 13, 77–86. [Google Scholar]
- Salcedo-Sanz, S.; García-Díaz, P.; Del Ser, J.; Bilbao, M.N.; Portilla-Figueras, J.A. A novel grouping coral reefs optimization algorithm for optimal mobile network deployment problems under electromagnetic pollution and capacity control criteria. Expert Syst. Appl. 2016, 55, 388–402. [Google Scholar] [CrossRef]
- Navarro, G.; Manic, M. FuSnap: Fuzzy control of logical volume snapshot replication for disk arrays. IEEE Trans. Ind. Electron. 2011, 58, 4436–4444. [Google Scholar] [CrossRef]
- Hanchevici, A.-B.; Patrascu, M.; Dumitrache, I. A hybrid PID-fuzzy control for linear SISO systems with variant communication delays. Adv. Fuzzy Syst. 2012, 2012, 217068:1–217068:8. [Google Scholar] [CrossRef]
- Jahandari, S.; Kalhor, A.; Araabi, B.N. A self tuning regulator design for nonlinear time varying systems based on evolving linear models. Evol. Syst. 2016, 7, 159–172. [Google Scholar] [CrossRef]
- Inteco Ltd. Modular Servo System, User’s Manual; Inteco Ltd.: Krakow, Poland, 2007. [Google Scholar]
0.006858 | 0.085588 | 40 | 0.747404 | 5.08539 | 0.003443 | 4.67856 | 32604.4 |
0.06858 | 0.085016 | 40 | 0.740636 | 5.11954 | 0.003431 | 4.70998 | 118689 |
0.6858 | 0.012792 | 20 | 0.250669 | 17 | 0.001883 | 15.64 | 873561 |
0.0066695 | 0.0855753 | 40 | 0.75 | 5.08614 | 0.00344263 | 4.67925 | 32497.9 |
0.066695 | 0.0844424 | 40 | 0.736102 | 5.1543 | 0.00341979 | 4.74196 | 109271 |
0.66695 | 0.0127918 | 20 | 0.250173 | 17 | 0.00188304 | 15.64 | 864912 |
for GWO | for GWO | for PSO | for PSO | for GSA | for GSA | |
0.006858 | 1865 | 0.9279 | 1933 | 0.0077 | 2322 | 0.8329 |
0.06858 | 1237 | 0.1327 | 1185 | 0.0011 | 1477 | 0.1191 |
0.6858 | 1461 | 0.2946 | 1559 | 0.0070 | 1685 | 0.1334 |
for GWO | for GWO | for PSO | for PSO | for GSA | for GSA | |
0.0066695 | 1313 | 0.8496 | 2169 | 0.0071 | 1634 | 0.7626 |
0.066695 | 965 | 0.1254 | 1080 | 0.1326 | 990 | 0.1745 |
0.66695 | 1529 | 0.2387 | 1578 | 0.0057 | 1997 | 0.1080 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Precup, R.-E.; David, R.-C.; Szedlak-Stinean, A.-I.; Petriu, E.M.; Dragan, F. An Easily Understandable Grey Wolf Optimizer and Its Application to Fuzzy Controller Tuning. Algorithms 2017, 10, 68. https://doi.org/10.3390/a10020068
Precup R-E, David R-C, Szedlak-Stinean A-I, Petriu EM, Dragan F. An Easily Understandable Grey Wolf Optimizer and Its Application to Fuzzy Controller Tuning. Algorithms. 2017; 10(2):68. https://doi.org/10.3390/a10020068
Chicago/Turabian StylePrecup, Radu-Emil, Radu-Codrut David, Alexandra-Iulia Szedlak-Stinean, Emil M. Petriu, and Florin Dragan. 2017. "An Easily Understandable Grey Wolf Optimizer and Its Application to Fuzzy Controller Tuning" Algorithms 10, no. 2: 68. https://doi.org/10.3390/a10020068
APA StylePrecup, R. -E., David, R. -C., Szedlak-Stinean, A. -I., Petriu, E. M., & Dragan, F. (2017). An Easily Understandable Grey Wolf Optimizer and Its Application to Fuzzy Controller Tuning. Algorithms, 10(2), 68. https://doi.org/10.3390/a10020068