Next Article in Journal
Evaluation of the Antimicrobial Activity of Different Antibiotics Enhanced with Silver-Doped Hydroxyapatite Thin Films
Previous Article in Journal
Extensive Characterization of Oxide-Coated Colloidal Gold Nanoparticles Synthesized by Laser Ablation in Liquid
Previous Article in Special Issue
Structure and Transport Properties of Dense Polycrystalline Clathrate-II (K,Ba)16(Ga,Sn)136 Synthesized by a New Approach Employing SPS
Open AccessArticle

Effects of the CO2 Guest Molecule on the sI Clathrate Hydrate Structure

1
Departamento de Química Física y Analítica, Universidad de Oviedo, Oviedo 33006, Spain
2
Centro de Astrobiología (INTA-CSIC), Torrejón de Ardoz 28850, Spain
3
Department of Chemistry, University of British Columbia, Kelowna, BC V1V1V7, Canada
4
Laboratoire de Chimie Théorique, CNRS & Université Pierre et Marie Curie, Sorbonne Universités, Paris 75005, France
*
Author to whom correspondence should be addressed.
Academic Editor: Yuri Grin
Materials 2016, 9(9), 777; https://doi.org/10.3390/ma9090777
Received: 11 July 2016 / Revised: 15 August 2016 / Accepted: 8 September 2016 / Published: 15 September 2016
(This article belongs to the Special Issue Inorganic Clathrate Materials)
This paper analyzes the structural, energetic and mechanical properties of carbon dioxide hydrate clathrates calculated using finite cluster and periodic ab initio density-functional theory methodologies. Intermolecular interactions are described by the exchange-hole dipole moment method. The stability, gas saturation energetics, guest–host interactions, cage deformations, vibrational frequencies, and equation of state parameters for the low-pressure sI cubic phase of the CO2@H2O clathrate hydrate are presented. Our results reveal that: (i) the gas saturation process energetically favors complete filling; (ii) carbon dioxide molecules prefer to occupy the larger of the two cages in the sI structure; (iii) blue shifts occur in both the symmetric and antisymmetric stretching frequencies of CO2 upon encapsulation; and (iv) free rotation of guest molecules is restricted to a plane parallel to the hexagonal faces of the large cages. In addition, we calculate the librational frequency of the hindered rotation of the guest molecule in the plane perpendicular to the hexagonal faces. Our calculated spectroscopic data can be used as signatures for the detection of clathrate hydrates in planetary environments. View Full-Text
Keywords: clathrates hydrates; carbon dioxide; DFT; high pressure clathrates hydrates; carbon dioxide; DFT; high pressure
Show Figures

Figure 1

MDPI and ACS Style

Izquierdo-Ruiz, F.; Otero-de-la-Roza, A.; Contreras-García, J.; Prieto-Ballesteros, O.; Recio, J.M. Effects of the CO2 Guest Molecule on the sI Clathrate Hydrate Structure. Materials 2016, 9, 777.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop