Flexural Strength of Preheated Resin Composites and Bonding Properties to Glass-Ceramic and Dentin
Abstract
:1. Introduction
2. Materials and Methods
Material | Composition | Filler Size | Filler Content (wt%/vol%) | Lot no | Manufacturer |
---|---|---|---|---|---|
TEC | Resin: Bis-GMA, UDMA, TEGDMA Filler: barium glass, ytterbium trifluoride, mixed oxide | 0.04–3 µm (mean: 0.55 µm) | 76/55 | S09551 | Ivoclar Vivadent (Schaan, Liechtenstein) |
FSXT | Resin: Bis-GMA, Bis-EMA, UDMA, TEGDMA Filler:zirconia, silica | 5–20 nm with mean clusters of 0.6–1.4 µm | 79/60 | 8RG | 3M ESPE (Seefeld, Germany) |
V | Resin: Bis-GMA, TEGDMA Filler: barium Aluminium fluoride glass, silicon dioxide | 0.04–2 µm | 78/61 | 010405 | Heraeus Kulzer (Hanau, Germany) |
2.1. Three-Point Flexural Strength Measurements
- F: load at fracture (N)
- l: distance between the supports (mm)
- b: width of the specimen (mm)
- h: height of the specimen (mm)
2.2. Shear Bond Strength Measurements
- F: load at fracture (N)
- A: adhesive area (mm2)
2.3. Interfacial Tension Measurements
2.4. Statistical Analysis
3. Results
3.1. Three-Point Flexural Strength
3.1.1. Impact of Temperature for Each RC
RC | Pre-Heating | Mean ± SD | 95% CI | Weibull Modulus | 95% CI | Characteristic FS | 95% CI |
---|---|---|---|---|---|---|---|
FSXT | 25 °C | 92 ± 5 a/B | (87; 96) | 21 | (9; 40) | 94 | (90; 98) |
37 °C | 91 ± 7 a/B | (85; 97) | 14 | (6; 27) | 95 | (89; 100) | |
54 °C | 96 ± 4 a/B | (91; 99) | 28 | (13; 53) | 98 | (94; 100) | |
68 °C | 94 ± 4 a/B | (89;97) | 26 | (12; 51) | 96 | (92; 99) | |
TEC | 25 °C | 63 ± 7 a/A | (56; 68) | 10 | (4; 20) | 66 | (60; 70) |
37 °C | 73 ± 5 b/A | (68; 77) | 21 | (9; 40) | 75 | (71; 78) | |
54 °C | 79 ± 6 b/A | (73; 84) | 15 | (6; 29) | 82 | (77; 86) | |
68 °C | 76 ± 8 b/A | (69; 83) | 12 | (5; 23) | 79 | (73; 84) |
3.1.2. Impact of RC for Each Temperature
3.1.3. Weibull Modulus
3.2. Shear Bond Strength to Dentin
3.2.1. Impact of RC for Each Temperature
RC | Pre-Heating | Mean ± SD | 95% CI | Weibull-Modulus | 95% CI | Characteristic SBS | 95% CI |
---|---|---|---|---|---|---|---|
FSXT | 25 °C | 12 ± 3.5 a/B | (8; 15) | 3.3 | (0; 7) | 13 | (9; 16) |
37 °C | 14 ± 5.0 a/B | (9; 18) | 3.1 | (0; 6) | 16 | (11; 20) | |
54 °C | 15 ± 5.1 a/B | (10; 19) | 3.8 | (0; 8) | 17 | (12; 20) | |
68 °C | 13 ± 4.3 a/B | (8; 17) | 3.8 | (0; 8) | 14 | (10; 17) | |
TEC | 25 °C | 7.1 ± 1.3 a/A | (5; 9) | 6 | (2; 12) | 8 | (5; 9) |
37 °C | 8.3 ± 3.0 a/A | (5; 11) | 2.5 | (0; 5) | 9 | (6; 13) | |
54 °C | 7 ± 1.8 a/A | (4; 9) | 4.5 | (1; 9) | 8 | (5; 9) | |
68 °C | 7.9 ± 3.2 a/A | (4; 11) | 3.4 | (0; 7) | 9 | (6; 11) |
3.2.2. Weibull Modulus
3.2.3. Fracture Type Analysis
3.3. Shear Bond Strength to Ceramic
RC | Pre-Heating | Mean ± SD | 95% CI | Weibull-Modulus | 95% CI | Characteristic SBS | 95% CI |
---|---|---|---|---|---|---|---|
V | 25 °C | 20 ± 5 a/A | (15; 24) | 5.2 | (1; 11) | 21 | (18; 35) |
37 °C | 14 ± 5 a/A | (9; 18) | 3 | (0; 6) | 16 | (11; 20) | |
54 °C | 16 ± 4 a/A | (12; 20) | 4.4 | (1; 9) | 18 | (14; 21) | |
68 °C | 15 ± 6 a/A | (10; 20) | 3.9 | (1; 8) | 17 | (13; 20) | |
FSXT | 25 °C | 23 ± 5 a/A | (17; 27) | 5.1 | (1; 10) | 24 | (20; 28) |
37 °C | 19 ± 6 a/A | (14; 24) | 3.8 | (1; 8) | 21 | (16; 26) | |
54 °C | 17 ± 8 a/A | (10; 23) | 2.3 | (0; 5) | 19 | (13; 26) | |
68 °C | 18 ± 6 a/A | (12; 23) | 3.9 | (1; 8) | 19 | (15; 24) | |
TEC | 25 °C | 25 ± 7 a/A | (19; 30) | 4 | (1; 8) | 27 | (22; 33) |
37 °C | 34 ± 9 a,b/B | (27; 41) | 5 | (1; 10) | 37 | (31; 43) | |
54 °C | 38 ± 16 a,b/B | (25; 51) | 2.7 | (0; 6) | 43 | (32; 56) | |
68 °C | 44 ± 15 b/B | (31; 55) | 3.4 | (0; 7) | 48 | (38; 59) |
3.3.1. Impact of Temperature for Each RC
3.3.2. Impact of RC for Each Temperature
3.3.3. Weibull Modulus
3.3.4. Fracture Type Analysis
3.4. Interfacial Tension
3.4.1. Impact of Temperature for Each Resin Composite (p < 0.001)
RC | Pre-Heating | Mean ± SD | 95% CI |
---|---|---|---|
V | 25 °C | 59 ± 0.4 a/A | (57; 60) |
37 °C | 59 ± 0.9 a,b/A | (57; 60) | |
54 °C | 60 ± 0.8 b/A | (58; 61) | |
68 °C | 63 ± 1 c/A | (61; 64) | |
FSXT | 25 °C | 49 ± 0.6 a/C | (47; 50) |
37 °C | 50 ± 0.6 a/C | (48; 51) | |
54 °C | 53 ± 1 b/C | (50; 54) | |
68 °C | 54 ± 0.9 b/C | (51; 55) | |
TEC | 25 °C | 53 ± 0.5 a/B | (51; 54) |
37 °C | 54 ± 0.7 a/B | (51; 54) | |
54 °C | 55 ± 0.6 b/B | (53; 55) | |
68 °C | 56 ± 0.6 c/B | (54; 57) |
3.4.2. Impact of Resin Composite for Each Temperature (p < 0.001)
4. Discussion
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Griffiths, B.M.; Naasan, M.; Sherriff, M.; Watson, T.F. Variable polymerisation shrinkage and the interfacial micropermeability of a dentin bonding system. J. Adhes. Dent. 1999, 1, 119–131. [Google Scholar] [PubMed]
- Attin, T.; Filli, T.; Imfeld, C.; Schmidlin, P.R. Composite vertical bite reconstructions in eroded dentitions after 5.5 years: A case series. J. Oral Rehabil. 2012, 39, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Ilie, N.; Hickel, R. Investigations on mechanical behaviour of dental composites. Clin. Oral. Investig. 2009, 13, 427–438. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.A.; Ramakrishna, Y.; Munshi, A.K. Effect of moisture and moisture-insensitive primer on bond strength of composite resin to enamel and dentin. Gen. Dent. 2014, 62, e17–e20. [Google Scholar] [PubMed]
- Shimazu, K.; Karibe, H.; Ogata, K. Effect of artificial saliva contamination on adhesion of dental restorative materials. Dent. Mater. J. 2014, 33, 545–550. [Google Scholar] [CrossRef] [PubMed]
- Schmidlin, P.R.; Zehnder, M.; Schlup-Mityko, C.; Gohring, T.N. Interface evaluation after manual and ultrasonic insertion of standardized class I inlays using composite resin materials of different viscosity. Acta Odontol. Scand. 2005, 63, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Blalock, J.S.; Holmes, R.G.; Rueggeberg, F.A. Effect of temperature on unpolymerized composite resin film thickness. J. Prosthet. Dent. 2006, 96, 424–432. [Google Scholar] [CrossRef] [PubMed]
- Knight, J.S.; Fraughn, R.; Norrington, D. Effect of temperature on the flow properties of resin composite. Gen. Dent. 2006, 54, 14–16. [Google Scholar] [PubMed]
- Goulart, M.; Damin, D.F.; Melara, R.; Conceição, A.D.A.B. Effect of pre-heating composites on film thickness. J. Res. Dent. 2013, 1, 274–280. [Google Scholar]
- Bindl, A.; Luthy, H.; Mormann, W.H. Thin-wall ceramic CAD/CAM crown copings: Strength and fracture pattern. J. Oral Rehabil. 2006, 33, 520–528. [Google Scholar] [CrossRef] [PubMed]
- Salerno, M.; Derchi, G.; Thorat, S.; Ceseracciu, L.; Ruffilli, R.; Barone, A.C. Surface morphology and mechanical properties of new-generation flowable resin composites for dental restoration. Dent. Mater. 2011, 27, 1221–1228. [Google Scholar] [CrossRef] [PubMed]
- Braem, M.; Finger, W.; Van Doren, V.E.; Lambrechts, P.; Vanherle, G. Mechanical properties and filler fraction of dental composites. Dent. Mater. 1989, 5, 346–348. [Google Scholar] [CrossRef]
- Daronch, M.; Rueggeberg, F.A.; De Goes, M.F. Monomer conversion of pre-heated composite. J. Dent. Res. 2005, 84, 663–667. [Google Scholar] [CrossRef] [PubMed]
- Trujillo, M.; Newman, S.M.; Stansbury, J.W. Use of near-IR to monitor the influence of external heating on dental composite photopolymerization. Dent. Mater. 2004, 20, 766–777. [Google Scholar] [CrossRef] [PubMed]
- Freedman, G.; Krejci, I. Warming up to composites. Compend. Contin. Educ. Dent. 2004, 25, 371–374, 376. [Google Scholar] [PubMed]
- Conditt, M.; Leinfelder, K. Improving the polymerization of composite resins. Pract. Proced. Aesthet. Dent. 2006, 18, 169–171. [Google Scholar] [PubMed]
- Schwengberg, S.; Bohlen, H.; Kleinsasser, N.; Kehe, K.; Seiss, M.; Walther, U.I.; Hickel, R.; Reichl, F.X. In vitro embryotoxicity assessment with dental restorative materials. J. Dent. 2005, 33, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Urcan, E.; Scherthan, H.; Styllou, M.; Haertel, U.; Hickel, R.; Reichl, F.-X. Induction of DNA double-strand breaks in primary gingival fibroblasts by exposure to dental resin composites. Biomaterials 2010, 31, 2010–2014. [Google Scholar] [CrossRef] [PubMed]
- Durner, J.; Spahl, W.; Zaspel, J.; Schweikl, H.; Hickel, R.; Reichl, F.-X. Eluted substances from unpolymerized and polymerized dental restorative materials and their Nernst partition coefficient. Dent. Mater. 2010, 26, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Durner, J.; Wellner, P.; Hickel, R.; Reichl, F.-X. Synergistic interaction caused to human gingival fibroblasts from dental monomers. Dent. Mater. 2012, 28, 818–823. [Google Scholar] [CrossRef] [PubMed]
- Wagner, W.C.; Aksu, M.N.; Neme, A.M.; Linger, J.B.; Pink, F.E.; Walker, S. Effect of pre-heating resin composite on restoration microleakage. Oper. Dent. 2008, 33, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Heintze, S.D.; Zimmerli, B. Relevance of in vitro tests of adhesive and composite dental materials, a review in 3 parts. Part 1: Approval requirements and standardized testing of composite materials according to ISO specifications. Schweiz Monatsschr Zahnmed 2011, 121, 804–816. [Google Scholar] [PubMed]
- Packham, D.E. Work of adhesion: Contact angles and contact mechanics. Int. J. Adhes. Adhes. 1996, 16, 121–128. [Google Scholar] [CrossRef]
- ISO 4049:2000. Dentistry–Polymer–Based Filling, Restorative and Luting Materials; International Organization for Standardization: Geneva, Switzerland, 2000.
- ISO/TS 11405:2003. Dental Materials–Testing of Adhesion to Tooth Structure; European Committee for Standardization: Brussels, Belgium, 2003.
- Schmidlin, P.R.; Stawarczyk, B.; Wieland, M.; Attin, T.; Hammerle, C.H.; Fischer, J. Effect of different surface pre-treatments and luting materials on shear bond strength to PEEK. Dent. Mater. 2010, 26, 553–559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Owens, D.K.; Wendt, R.C. Estimation of the surface free energy of polymers. J. Appl. Polym. Sci. 1969, 13, 174–177. [Google Scholar] [CrossRef]
- Kaelble, D.H. Dispersion-Polar Surface Tension Properties of Organic Solids. J. Adhes. 1970, 2, 66–81. [Google Scholar] [CrossRef]
- Lohbauer, U.; Zinelis, S.; Rahiotis, C.; Petschelt, A.; Eliades, G. The effect of resin composite pre-heating on monomer conversion and polymerization shrinkage. Dent. Mater. 2009, 25, 514–519. [Google Scholar] [CrossRef] [PubMed]
- Sideridou, I.D.; Karabela, M.M.; Vouvoudi, E. Physical properties of current dental nanohybrid and nanofill light-cured resin composites. Dent. Mater. 2011, 27, 598–607. [Google Scholar] [CrossRef] [PubMed]
- Ilie, N.; Rencz, A.; Hickel, R. Investigations towards nano-hybrid resin-based composites. Clin. Oral Investig. 2013, 17, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Benetti, A.R.; Asmussen, E.; Peutzfeldt, A. Influence of curing rate of resin composite on the bond strength to dentin. Oper. Dent. 2007, 32, 144–148. [Google Scholar] [CrossRef] [PubMed]
- Korkmaz, Y.; Gurgan, S.; Firat, E.; Nathanson, D. Effect of adhesives and thermocycling on the shear bond strength of a nano-composite to coronal and root dentin. Oper. Dent. 2010, 35, 522–529. [Google Scholar] [CrossRef] [PubMed]
- Scherrer, S.S.; Cesar, P.F.; Swain, M.V. Direct comparison of the bond strength results of the different test methods: A critical literature review. Dent. Mater. 2010, 26, 78–93. [Google Scholar] [CrossRef] [PubMed]
- Lindemuth, J.S.; Hagge, M.S. Effect of universal testing machine crosshead speed on the shear bond strength and bonding failure mode of composite resin to enamel and dentin. Mil. Med. 2000, 165, 742–746. [Google Scholar] [PubMed]
- Hara, A.T.; Pimenta, L.A.; Rodrigues, A.L. Influence of cross-head speed on resin-dentin shear bond strength. Dent. Mater. 2001, 17, 165–169. [Google Scholar] [CrossRef]
- Khoroushi, M.; Rafiei, E. Effect of thermocycling and water storage on bond longevity of two self-etch adhesives. Gen. Dent. 2013, 61, 39–44. [Google Scholar] [PubMed]
- Retief, D.H.; Wendt, S.L.; Bradley, E.L.; Denys, F.R. The effect of storage media and duration of storage of extracted teeth on the shear bond strength of Scotchbond 2/Silux to dentin. Am. J. Dent. 1989, 2, 269–273. [Google Scholar] [PubMed]
- Lee, J.J.; Nettey-Marbell, A.; Cook, A.; Pimenta, L.A.; Leonard, R.; Ritter, A.V. Using extracted teeth for research: The effect of storage medium and sterilization on dentin bond strengths. J. Am. Dent. Assoc. 2007, 138, 1599–1603. [Google Scholar] [CrossRef] [PubMed]
- Burke, F.J.; Hussain, A.; Nolan, L.; Fleming, G.J. Methods used in dentine bonding tests: An analysis of 102 investigations on bond strength. Eur. J. Prosthodont. Restor. Dent. 2008, 16, 158–165. [Google Scholar] [PubMed]
- Taira, Y.; Sakai, M.; Sawase, T. Effects of primer containing silane and thiophosphate monomers on bonding resin to a leucite-reinforced ceramic. J. Dent. 2012, 40, 353–358. [Google Scholar] [CrossRef] [PubMed]
- Williamson, R.T.; Mitchell, R.J.; Breeding, L.C. The effect of fatigue on the shear bond strength of resin bonded to porcelain. J. Prosthodont. 1993, 2, 115–119. [Google Scholar] [CrossRef] [PubMed]
- Barghi, N.; Fischer, D.E.; Vatani, L. Effects of porcelain leucite content, types of etchants, and etching time on porcelain-composite bond. J. Esthet. Restor. Dent. 2006, 18, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Kukiattrakoon, B.; Thammasitboon, K. The effect of different etching times of acidulated phosphate fluoride gel on the shear bond strength of high-leucite ceramics bonded to composite resin. J. Prosthet. Dent. 2007, 98, 17–23. [Google Scholar] [CrossRef]
- Della-Bona, A. Characterizing ceramics and the interfacial adhesion to resin: II- the relationship of surface treatment, bond strength, interfacial toughness and fractography. J. Appl. Oral Sci. 2005, 13, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Marshall, S.J.; Bayne, S.C.; Baier, R.; Tomsia, A.P.; Marshall, G.W. A review of adhesion science. Dent. Mater. 2010, 26, e11–e16. [Google Scholar] [CrossRef] [PubMed]
- Braga, R.R.; Meira, J.B.; Boaro, L.C.; Xavier, T.A. Adhesion to tooth structure: A critical review of "macro" test methods. Dent. Mater. 2010, 26, e38–e49. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.L.; Wei, R.; Buguin, A.; Taulemesse, J.M.; Le Moigne, N.; Bergeret, A.; Wang, X.; Keller, P. Stimuli-responsive topological change of microstructured surfaces and the resultant variations of wetting properties. ACS Appl. Mater. Interfaces 2013, 5, 7485–7491. [Google Scholar] [CrossRef] [PubMed]
- Daronch, M.; Rueggeberg, F.A.; Hall, G.; De Goes, M.F. Effect of composite temperature on in vitro intrapulpal temperature rise. Dent. Mater. 2007, 23, 1283–1288. [Google Scholar] [CrossRef] [PubMed]
- Rueggeberg, F.A.; Daronch, M.; Browning, W.D.; De Goes, M.F. In vivo temperature measurement: Tooth preparation and restoration with preheated resin composite. J. Esthet. Restor. Dent. 2010, 22, 314–322. [Google Scholar] [CrossRef] [PubMed]
- Zach, L.; Cohen, G. Pulp response to externally applied heat. Oral Surg. Oral Med. Oral Pathol. 1965, 19, 515–530. [Google Scholar] [CrossRef]
- Daronch, M.; Rueggeberg, F.A.; Moss, L.; de Goes, M.F. Clinically relevant issues related to preheating composites. J. Esthet. Restor. Dent. 2006, 18, 340–351. [Google Scholar] [CrossRef] [PubMed]
- Santana, I.L.; Lodovici, E.; Matos, J.R.; Medeiros, I.S.; Miyazaki, C.L.; Rodrigues-Filho, L.E. Effect of experimental heat treatment on mechanical properties of resin composites. Braz. Dent. J. 2009, 20, 205–210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kramer, M.R.; Edelhoff, D.; Stawarczyk, B. Flexural Strength of Preheated Resin Composites and Bonding Properties to Glass-Ceramic and Dentin. Materials 2016, 9, 83. https://doi.org/10.3390/ma9020083
Kramer MR, Edelhoff D, Stawarczyk B. Flexural Strength of Preheated Resin Composites and Bonding Properties to Glass-Ceramic and Dentin. Materials. 2016; 9(2):83. https://doi.org/10.3390/ma9020083
Chicago/Turabian StyleKramer, Matthias Richard, Daniel Edelhoff, and Bogna Stawarczyk. 2016. "Flexural Strength of Preheated Resin Composites and Bonding Properties to Glass-Ceramic and Dentin" Materials 9, no. 2: 83. https://doi.org/10.3390/ma9020083
APA StyleKramer, M. R., Edelhoff, D., & Stawarczyk, B. (2016). Flexural Strength of Preheated Resin Composites and Bonding Properties to Glass-Ceramic and Dentin. Materials, 9(2), 83. https://doi.org/10.3390/ma9020083